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Figure 1: We present Vsens Toolkit, an AR-based open-ended system for virtual sensor practices. The system allows users to
create customized scenes in augmented reality by utilizing multiple virtual sensors, virtual entities, and animations. It supports
the design, prototyping, and preliminary evaluation of HAR systems through synthesized data from simulation.

Abstract

The emergence of virtual sensors in recent years has opened up
new possibilities for the development of human activity recogni-
tion (HAR) systems. For instance, we can synthesized virtual sensor
data for those scarce datasets, such as accelerometer data, from
the widely available multimedia resources online through cross-
modal approaches. However, existing solutions on virtual sensors
primarily focus on batch pipelines, relying heavily on lengthy pro-
cessing workflows and sophisticated computer vision techniques,
which often lack interactivity and flexibility for the usage in cus-
tomized and small-scale scenarios. In this work, we present the
Vsens Toolkit, an AR-based open-ended system for virtual sensors,
which serves as an preliminary exploration of the user interface
for virtual sensors. It integrates functionalities such as scene con-
struction, data collection, data augmentation, and visualization. In
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this interactivity demonstration, we showcase exemplar scenarios
including wearable accelerometers, capacitive sensing, wrist-worn
sensor tracking, and sandbox for free exploration (Figure 1).
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1 Introduction

Advances in electronics and machine learning envision a future
where people are surrounded by numerous Internet of Things (IoT)
sensors and stepping further towards the ubiquitous computing.
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The human activity recognition (HAR) systems embedded in every-
day interfaces have been endowed with more powerful capabilities
with the development of miniaturized sensors and advanced ma-
chine learning techniques. The emergence of virtual sensors have
promote the development of HAR systems from multifaceted as-
pects of reliability, scalability, and accessibility. The core idea of
virtual sensors lies in simulation. By creating digital twins of hu-
mans or objects, combined with physical simulations, it become
possible to acquire data across a wide range of scenarios or sen-
sor configurations, substantially minimizing the costs associated
with traditional data collection process. For instance, the cross-
modal data acquisition allow them to generate virtual samples for
scarce datasets (e.g., accelerometer [13] or Doppler radar [2]) from
the abundant ones such as video; further more, their adjustable
nature in virtual environment enables various ways of augmenta-
tion [8, 36], fostering richer datasets while enhancing both model
generalization and application customization.

However, existing virtual sensor practices predominantly focus
on building sophisticated pipelines [5, 13, 18] or refining specific
stages within the workflow [14, 21], excelling in batch data pro-
cessing but falling short in flexibility and accessibility for agile
development or small-scale data collection. Nevertheless, offering
support for HAR system development in areas like promoting pro-
totyping and reducing evaluation costs is an inherent capability of
virtual sensors and a part of their envisioned future. Yet, how to de-
sign intuitive and effective interfaces for virtual sensors that satisfy
end-users’ demands for developing highly flexible and personalized
HAR systems remains largely unexplored.

Augmented Reality (AR) has been explored widely as a tool bridg-
ing the virtual space and the reality [6, 7, 40], offering an pathway
of bringing the context of surroundings to the computing system.
In this work, we present the prototype of Vsens, an open-ended and
open-sourced AR toolkit aims at facilitating the interactive usage of
virtual sensors. Beyond the foundational functions during the col-
lection of virtual sensor data for HAR systems (e.g. loading models
and animations), the introduction of AR as the carrier enhance the
system with flexibility and user empowerment, including enables
user to construct specific simulation environments, define collision
volumes for the surrounding space for sensor interaction, or import
customized virtual objects, combinations and types of sensors. By
incorporating these features, virtual sensors become increasingly
agile and accessible, streamlining the prototyping process of HAR
systems by lowering the need for extensive hardware knowledge
and reducing cost. On the other hand, we have integrated the rep-
resentative data augmentation functionality of virtual sensors into
the system, proposing Vsens Toolkit as an exploration of a more
accessible interface for virtual sensors and an initial step toward
their practical application.

In this Interactivity session, we present the live demo of Vsens
with three exemplar scenarios including wearable accelerometers,
capacitive sensing, wrist-worn sensor tracking, and sandbox for
free exploration (Figure 1). With the components provided by our
system, users are able to build their own scenes, record motions,
dynamically modify sensor deployment, apply data augmentation,
and inspect the virtual sensor data in real-time through a variety
of visualizations.
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2 Related Work
2.1 Virtual Sensors

There have been successful practices of HAR systems based on
virtual inertial measurement unit (IMU), as a type of sensor being
extensively studied and implemented in wearable devices. Virtual
IMU data can be obtained from 3D motion sequences within a vir-
tual environment by calculating the displacement and rotation of
key joints along the timeline [41], shifting IMU data acquisition to
much richer sources, including motion capture (MoCap) databases
[26, 38], manually designed animation [8], human-object extraction
from videos [13], or generative modals [17]. Virtual IMU data gener-
ated through these methods has been demonstrated to be effective
in supporting various applications such as daily activity recognition
[14], exercise analysis [33], and sign language recognition [19, 27].
Beyond IMUs, other types of sensors, such as Doppler radar [2, 5],
distance sensor [35], or optical sensor [23], have also been proven
to be feasible for generation through simulation. In addition to syn-
thesizing sensor data across modalities, another major advantage of
virtual sensors lies in their ability to enhance data diversity through
physical simulation, extending beyond the traditional data-level
augmentations [3, 20]. For instance, with virtual IMUs, we can gen-
erate training datasets that improve the generalizability of HAR
systems by leveraging joint motion ranges [9], or incorporating
fictitious structures such as springs [36].

Existing research on virtual sensors largely focuses on expanding
modality transformations and achieving more realistic simulations.
As their performance gradually reaches practical application levels
in the foreseeable future, it is time to explore ways to better lever-
age virtual sensors for supporting HAR system development. Main-
stream virtual sensor systems lack attention to user interfaces and
are primarily used within 3D editors on screen (e.g. widely adopted
Unity3D), which often fall short in providing convenient capabili-
ties for handy sensor redeployment and awareness of developers’
surroundings. In this work, we use AR as a medium between real-
ity and virtuality, serving as an preliminary investigation towards
the practical application of virtual sensors supporting exploratory
learning, rapid prototyping, pilot evaluation, and so on.

2.2 XR Toolkits

In the past decade, researchers have been developing toolkits to
support the process of innovation in all ways [15], including provid-
ing tutorials and guidance [7, 29], empowering audiences for new
technologies[25, 34], integrating with current practices and infras-
tructures [11, 32], and enabling replication and creative exploration
[10, 16]. Within these toolkits, XR stands out as a widely favored
platform for tools featuring tutorial [7, 29, 39] and prototyping
[6, 12] capabilities. For instance, VRception [6] provides a solution
for effectively conducting user studies; SensorViz [12] facilitates
multi-level visualization for prototyping, ranging from datasheet
specification before purchasing sensors, and live/ recorded sensor
data during the development.

In this work, we prioritize simulation as the key contribution
in such XR toolkit. While focusing on the visualization of virtual
sensor data, we underscore the role of virtual sensors in interacting
with objects across virtual and physical environments using AR, and
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their flexible application in deploying digital humans and motion
animations.

3 System Demonstration

3.1 Implementations

The Vsens Toolkit relies entirely on a virtual software environment
and an head-mounted display (HMD) for straightforward use. The
system was developed and tested on Meta Quest 3. The software
part was developed in the Unity3D together with Meta XR All-in-
One SDK!. Tt consists of three modules that collaboratively produce
virtual data: virtual sensors that can be freely placed and combined
within AR environments, virtual objects that passively interact
with users, and digital humans capable of incorporating various
animations. The Vsens Toolkit will be published as an open-source
project on GitHub?, for researchers and developers to conduct tests
and create personalized plugins.
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Figure 2: The system allows users to create customized scenes
by (a) virtual sensors, (b) virtual entities, and (c) animations,
to collect (d) virtual data of various scenarios, such as wear-
able sensors and capacitive images.

3.1.1 Virtual Sensors Module. In the demonstration, we feature
three virtual sensors that have been suggested in prior studies,
shown in Figure 2(a): virtual IMUs [41] and virtual distance sensors
[35], and virtual optical sensors [23]. The virtual IMU calculates
acceleration by performing double integration on displacement
over time and also provides gyroscopic information; The virtual
distance sensor employs raycast collision detection to calculate
the distance between itself and entities with defined collision vol-
umes; The virtual optical sensor can simulate the light intensity at
a specific location by calculating the distance and occlusion rela-
tionship between the sensor and the light source. These sensors
support adjustable sampling rates up to the 120 Hz limit of the
simulation engine. Furthermore, they can be seamlessly attached
to designated walls, surfaces, furniture, or virtual entities within
the AR environment.

3.1.2  Virtual Entities Module. In the Vsens framework, a range of
virtual entities plays a critical role in the generation of virtual data
(Figure 2(b)). These entities include digital humans capable of load-
ing motion animations and movable objects, such as a door, that
!https://assetstore.unity.com/packages/tools/integration/meta-xr-all-in-one-sdk-

269657
Zhttps://github.com/KEIO-LCLAB/SensoReality
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passively interact with users. Users can import these entities to
customize their simulated scenarios, offering a high degree of flexi-
bility. For example, digital humans modified through techniques
such as SMPL [22] can produce virtual IMU data that reflect varia-
tions in body shape, characteristics, and other conditions. During
the demonstration, users will have access to multiple rigid body
objects and digital humans to explore these functionalities.

3.1.3  Animations Module. In addition to passive movable objects,
the animations in the proposed system are primarily designed to
control the motion of digital humans (Figure 2(c)). These anima-
tions are composed of forward kinematics (FK) time series for each
joint and allow users to import customized animations. The system
enables users to interact with the animations by pausing them, ad-
justing their playback speed, or modifying their amplitude, thereby
creating virtual sensor data that reflects various motion styles.

3.2 Supportive Features

3.2.1 Sensor Data Visualization. In our system, users are provided
with multi-layered visualization options. For instance, as depicted
in Figure 2(a), real-time data visualization is available for individual
sensors, such as axes extending from the IMU or bar charts above
the distance sensor. Furthermore, as shown in Figure 2(d), time-
series graphs display data from multiple sensors, allowing users to
examine specific moments of sensor data via touch and export the
data to a computer for further analysis. The diverse visualization
methods offered by AR enhance users’ understanding of sensor
feedback in specific contexts and support the effective design of
HAR systems.
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(a) Sensor placement, orientation changes.  (b) Updated virtual sensor data.

Figure 3: (a), (b) For a recorded animation, users can obtain
updated sensor data by adjusting the position and orientation
of the sensors. In this example, the IMU was flipped 180
degrees. (c) Digital human model with different body shapes.

3.2.2  Motion Recording & Dynamic Adjustment. Mainstream HMD
offer relatively precise hand-tracking capabilities, making it eas-
ier to simulate wrist-worn virtual sensors, which are commonly
employed in smartwatch-based HAR systems [4, 27]. This func-
tionality differs from digital humans animated through pre-set mo-
tions, as it enables users to capture their own hand movements and
generate corresponding virtual sensor data. To support such use
cases, our system provides features for recording hand animations
and subsequently adjusting the position and orientation of sensors
(Figure 3). Unlike in real-world settings, where testing different
wearable sensor placements and orientations requires repeated
motion recordings, our system allows for flexible adjustments and
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provides real-time feedback on data changes to evaluate the optimal
configuration.

3.2.3  Augmentation. For HAR systems based on wearable sensors,
one of the grand challenges lies in the intra-individual and inter-
individual variations when performing the same motion [1, 28, 31].
In Vsens Toolkit, we employed the skinned multi-person linear
model (SMPL) [22], which is a skinned vertex-based model that ac-
curately represents a wide variety of body shapes in natural human
poses. SMPL incorporates simulations of natural pose-dependent
deformations and soft-tissue dynamics, which enables us to more
precisely emulate the variations in IMU signals across users of
diverse body types during different movements, which propel sim-
ulations towards greater realism.

4 Discussion

The main contribution of the VSens Toolkit is to offer a prelimi-
nary answer to the question of how to best utilize virtual sensor
technology as a practical tool for development and testing. By in-
corporating key features of virtual sensor technology, including
data augmentation, the system aims to leverage AR as a medium
to strengthen the link between the simulated environment and the
user’s real-world surrounds. In this section, we provide a brief dis-
cussion to elaborate the challenges encountered by our prototype
and envision its future development.

One of the obstacles is the scope of HAR systems that can be eas-
ily simulated is limited. Previous works on virtual sensors [2, 13, 35]
been limited to the most straightforward use cases of the sensors.
However, in the field of Human-Computer Interaction (HCI), the
sensing methods employed in interface or HAR system design are
often more complex and indirect. For instance, interfaces based
on the characteristics of materials or specific physical phenom-
ena are commonly used [24, 30]. Currently, there is no definitive
and effective solution to address the simulation problems in these
complex scenarios, but with the advancements in generative mod-
els and computer graphics [37], virtual sensors are expected to be
applicable to more extensive scenarios in the near future.

Another challenge arises in how we assess the reliability of the
reference data provided by virtual sensors. It is not possible to a
priori evaluation the disparity between virtual sensor data and
real-world data in a given scenario, as this depends on factors such
as the type of sensor, the quality of motion animations, and the
quality of simulation which depends on the hardware. Although
the Vsens Toolkit reduces the need for specialized hardware and
software knowledge during prototyping, enabling designers and
hobbyists with less technical expertise to quickly test their systems,
a thorough evaluation of the reliability of virtual data, such as how
much of it is dependable for reference, requires empirical knowledge
regarding the virtual sensors. The challenge of balancing this trade-
off is an ongoing topic for exploration and discussion in future
research.

5 Conclusion

In this work, we present the prototype of the Vsens Toolkit, marking
a initial step toward enhancing the practical application and broader
accessibility of virtual sensors. By streamlining the prototyping
process, reducing the technical expertise required for HAR system
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development, and minimizing evaluation costs, the toolkit aims
to democratize innovation in HAR systems, making them more
accessible to a wider range of researchers and practitioners.
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