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vCapTouch: Interactive Touch Sensing Data
Synthesis for Hand Gesture Recognition
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Abstract—Touch sensing is a prominent pillar technique in
various human–computer interactive scenarios, especially when
touchscreen-based capacitive touch sensing has become a rep-
resentative in user-end electronics. An intelligent touch-sensing
system captures the capacitive touch-sensing images to recognize
the objects via machine learning techniques. However, collecting
the training dataset is usually laborious and time-consuming,
requiring specific coding skills and knowledge. In this article, we
introduced vCapTouch, a data generation method to synthesize
the touch sensing data, which can be directly employed to train a
machine learning model and recognize the real touching behavior,
significantly lowering the need for real dataset collection. The
presented method is primarily based on the idea of the digital
twin. We implemented the method with Unity3D, a game engine
that enables high interactivity, is easy to use, and has a low cost.
We evaluated the proposed method on eight users with different
touch screen devices and proved the feasibility of synthesizing
the touch sensing data.

Index Terms—Data synthesis, digital twin, hand gesture, touch
sensing.

I. INTRODUCTION

BY CAPTURING natural and fast interaction behaviors,
touch sensing has become a fundamental interaction

paradigm for building interaction systems [1]. As the grad-
ual transition from resistive-based to capacitive-based, touch
sensing has been widely used in end-user devices, including
smartphones, tablets, and smartwatches, and has delved into
hundreds of example applications on a daily basis [2]. As
one of the core technologies for human–computer interaction
(HCI), touch sensing-based research has been continuously
extended to recognize daily objects, and body limbs have
been applied in games and entertainment technologies [3].
The field has attracted extensive attention, and various
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degrees of technical improvements have been proposed for its
core technologies, such as recognition accuracy and embed-
ded development. Mainstream touch sensing data processing
approaches typically integrate capacitive electrode data from
the touchscreen into 2-D matrix or grayscale images for
target object recognition [6]. It follows the typical machine-
learning route by collecting the relevant capacitive electrode
data, training the machine-learning model, and deploying it
in the embedded system. This approach can effectively build
intelligent interactive interfaces, enabling users to operate
smart devices and computing systems using simple gestures
or classify different objects for context-aware calculation.

Intelligent touch-sensing technology provides essential sup-
port for the further realization of pervasive interfaces. Existing
research efforts constantly propose lowering the development
threshold of touch sensing-based interactive systems to achieve
a more technologically democratic user-based development
approach [4]. For example, multitouch Kit [4] demonstrates
a do-it-yourself (DIY) capacitive touch sensing toolkit with
a commodity microcontroller. Using simple hardware devices
and sample code on the Arduino, the nonprofessional user
could easily make up their own capacitive touch-sensing
system.

Most of the research driving the tooling of touch sensing
systems has concentrated on improving signal acquisition and
processing, as well as the electrode fabrication. However, little
work has focused on the improvement of data processing
and the integration of machine learning model development.
As a data-driven system, collecting the training dataset is
essential to ensure key prior knowledge for a touch sensing
system. However, the dataset collection process usually is
time-consuming. It would demonstrate the inconvenience and
difficulty of adding or altering the recognized object for
an already trained model. Thus, it forms a higher technical
barrier to creating a flexible, customized, and interactive touch-
sensing system.

The data synthesis technique gives a good opportunity to
accelerate the development of touch-sensing systems. Relying
on the generative model, it is capable of producing synthetic
capacitive touch-sensing images in recognition system train-
ing, e.g., the generative adversarial network (GAN) utilized
in the work of [5]. Though the generative model is able to
provide the dataset to a certain extent, the model itself is still
data-driven and requires real data samples to be deployed. The

2327-4662 c© 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Keio University. Downloaded on August 07,2025 at 06:03:57 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3937-2077
https://orcid.org/0009-0000-0782-4684
https://orcid.org/0000-0003-0912-4598
https://orcid.org/0000-0003-1746-1666
https://orcid.org/0000-0002-9558-9983


23824 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 13, 1 JULY 2025

Fig. 1. Traditional touch sensing data generation requires enormous effort on code work, device, and user participation, which is costly and time-consuming
and constructs higher requirements of the developer’s skills. Our approach is built based on a virtual environment and produces synthetic images, which can
be employed to train a machine learning model and recognize the real touching event. Following the digital twin paradigm, the developer could access the
data synthesis process by setting different sizes, positions, and rotations of 3-D models and designs with different shapes and simulated electrodes/pixels of
the touchscreen.

model’s generative capacity is limited when facing the new
object’s capacitive touch-sensing image. Therefore, exploring
a flexible and efficient capacitive touch-sensing image genera-
tion method would promote the application of capacitive touch
sensing in a broader set of scenarios.

Thus, in this article, we introduced a zero-shot touch sensing
data generation method, vCapTouch (Fig. 1). We employed the
physics simulation in Unity3D to generate the touch-sensing
images. Taking capacitive touch sensing as an instance, Ray-
based collision detection is utilized to sense 3-D objects
virtually, such as different hand gestures. The 3-D object’s
surface shape information can be sparsely detected in Unity3D,
which simulates the sensing capability of sparse capacitive
electrodes in a touchscreen. We also designed an augmenta-
tion scheme to further enhance the fidelity and usability of
synthetic capacitive touch-sensing images. The generated syn-
thetic capacitive touch-sensing images are subsequently used
to train the machine-learning model. We evaluated our method
by recognizing hand gesture images from 8 participants and
comparing the result of the proposed method with other state-
of-the-art approaches. The contributions of this article are as
follows.

1) We present a novel touch sensing data synthesizing
method. The ray-based collision detection and synthetic
data augmentation are employed to obtain the synthetic
dataset for touch sensing.

2) We validate the feasibility and superiority of the
proposed method and the generalizability to different
types of devices.

II. RELATED WORK

A. Touch Sensing-Based Interactive IoT System

Utilizing touching detection is one of the most efficient
interaction approaches between the user and the computing
system, which has already been deployed in various end-
user electronic devices [1]. Based on the most common
technique, capacitive touch sensing has been attracting a lot of
attention from researchers to investigate not only improving

the sensing performance [6], but also promoting the practical
and ubiquity of capacitive touch sensing [3], [4], [5]. To
increase the commercial-off-the-shelf (COTS) device experi-
ence at the user end, researchers have explored the different
operation approaches with force-based [7], nail-based [8]
touch sensing and so on. In addition to the finger area,
expanding the interaction area of capacitive touch sensing
most concentrated on the human body skin, [9] as well as
the artificial skin [10]. Moreover, improving the fabrication
of capacitive electrodes and systems would facilitate a wider
application of capacitive touch sensing, such as detecting
everyday objects [11]. Multitouch Kit introduced a custom
capacitive touch-sensing prototype with a commodity micro-
controller [4]. Lower development costs have led to a gradual
move toward lower development thresholds for capacitive
touch sensing, and several toolkits have been created better
to promote customized design in both hardware and software
aspects. For example, Steuerlein and Mayer [5] presented the
GAN-based deep learning toolkit to help design conductive
fiducial tangible applications.

B. Data-Driven and Cross-Modal Data Synthesis

Data scarcity has been recognized as a critical issue
in machine learning systems. Particularly in sensor-based
machine learning systems, the shallow and small-scale dataset
restricts the feasibility of mining the deep and generalized
data representation. Data synthesis is an effective approach
to expand the size of the collected dataset and enhance the
performance of the trained model [12]. Classical approaches
utilize the data-driven mechanism to learn the data distribution.
The representative work is recognized as a GAN model with
massive success in image generation [13]. To expand its
application, the nonvision sensor-based GAN model could also
generate various modal sensing data, including the inertial
measurement unit (IMU) signal [14], WiFi signal [15], radar
signal [16], capacitive touch-sensing image [5], and among
others. Additionally, recent large fundamental models also
explored an alternative way to produce the simulated data
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with language input, such as the text-to-image and text-to-
motion [17].

However, the involved data-driven approach still needs
significant prior knowledge of the training dataset. The recent
cross-modal approach provides a significant solution that
transforms the extensive video data into other nonvision
dataset generation [18], [19], [20]. It typically extracts the
objects and humans from the video and calculates the related
nonvision sensor signal. It allows the virtual elements to be
manipulated as the real ones in a digital twin way. The relevant
sensor signal could be simulated by accessing and calculating
kinematic data, for example the IMU signal [20], [21], [22],
radar signal [18], [19], infrared distance signal [21], lightness
signal [23], and so on. The virtual environment-based data
synthesis method would enable more explainable factors in
data generation and allow an interactive process to create the
sensor data, which is suitable for novice and learning for
inexperienced users.

C. Assisting the Recognition System Development

Human motion and daily object recognition assist the
computing system in understanding the context information
from the user end and are capable of constructing the
natural and pervasive interaction experience. Researchers
have been studying the various approaches to facilitate the
object recognition system development, including the com-
putational design [24], [25], [26], hardware fabrication [27],
machine-learning-based toolkit [28], [29], [30], [31], [32], data
accessibility and visualization [33], [34], and so on. Building
the specific user interface to recognize the user behavior
requires cumbersome calculation steps, works thus are emerg-
ing in assisting the computational process for the developers,
including the ergonomic constraints [24], augmented reality
design [25] and so on. Facilitating the essential object’s
location selection and customized design draws intensive
attention to such systems. For example, the FabHandWear [27]
presented a hand wearables fabrication tool with hand model
parameterization and components placement selection. To help
the sensor usage in building the recognition interactive system,
works also concentrated on the accessibility and visualization
of the sensor’s measurement, such as visualizing the data
with interactive system prototyping in SensorViz [33] and
utilizing the game engine to create the sensor simulation with
BlenSor [34].

In addition, relying on the machine learning technique
can build an intelligent recognition system for interaction.
Interactive machine learning is important in enabling more
users to engage in the machine-learning-based system devel-
opment [35]. For example, the gesture-aware annotation for
vision dataset building [38], augmented reality objects proto-
typing [39], and pose authoring in video [31]. A more generic
development method of the toolkit has been proposed to facil-
itate machine-learning-based motion and object recognition.
Many works on the toolkit have focused on integrating an
end-to-end pipeline containing the necessary steps for system
building with data collection, annotation, cleaning, dataset
splitting, modeling training, and testing. This approach is

Fig. 2. Digital twin process of synthetic touch sensing data and real touch
sensing data generation.

feasible for multimodal sensing technologies, including the
EMG [29], IMU [36], voice [37], and camera [28], [30],
[31], [32]. These systems lower the development threshold and
allow a DIY design for more customized scenarios.

Therefore, currently, the synthetic touch sensing data tech-
nique is a data-driven method that uses real data as the core
to generate relevant synthetic data. This method still requires
expensive resources and time to obtain real datasets and their
data distribution. Nevertheless, our method uses digital twin
technology to create corresponding electrode points and touch
gestures in a virtual environment to obtain corresponding
synthetic touch sensing data as a training set. As far as we
know, this is the first work to use the digital-twin method
to obtain a synthetic touch-sensing dataset. Since the entire
process is completed in the virtual environment, it has the
advantages of high interactivity, low cost, and ease of use.

III. VIRTUAL TOUCH SENSING DATA GENERATION

A. vCapTouch: Digital Twin-Based Touch Sensing Data
Synthesis

Generally, the digital twin is a virtual representation that
reflects the real physical object and has been widely applied
to the manufacturing field. vCapTouch applies this idea to
produce the synthetic touch sensing data, allowing the whole
data generation process to be more intuitive and interactive.
Fig. 2 illustrates the process of a digital twin for generating
synthetic touch sensing data. We reconstructed the virtual hand
and virtual touchscreen elements. Subsequently, the virtual
hand could be placed above the virtual touchscreen to simulate
the real hand contacting the touchscreen, which is able to
generate synthetic touch sensing data.

B. Sensing Pipeline of vCapTouch

As the capacitive touchscreen has become the mainstream
in user-end electronics, we mainly adopted the capacitive
touch-sensing process as the simulated object. In the practical
touchscreen, the human skin, as a large conductor, can build a
virtual ground and absorb the electric charge. When the human
finger contacts the touchscreen’s capacitive electrodes, it will
create an additional capacitor and alter the original electric
field distribution to increase the capacitance values. Access

Authorized licensed use limited to: Keio University. Downloaded on August 07,2025 at 06:03:57 UTC from IEEE Xplore.  Restrictions apply. 



23826 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 13, 1 JULY 2025

Fig. 3. Whole pipeline of vCapTouch. The simulation of touch sensing is
performed in the virtual environment, which maintains high interactivity and
intuition.

Fig. 4. 3-D hand model with different gestures in Unity3D. And each hand
model contains the mesh and collider elements.

to the touchscreen’s capacitive value allows the creation of
the capacitive matrix and the relevant grayscale image by
normalization into 0 to 255. Different contact area sizes of the
human body would lead to various capacitance values.

We adopted this idea and realized the touch sensing data
synthesis in the virtual environment, Unity3D, to form a
digital twin-based simulation. Fig. 3 shows the pipeline of
vCapTouch synthesizing the touch sensing data. By referring
to the real situation, we employed the virtual object and
virtual cubes simulating the electrodes to generate the sensing
matrix, which can be converted to the capacitive touch-sensing
image. Unlike other mechanism-based simulations (e.g., sim-
ulating the electric field variation) and data-driven simulation
(e.g., GAN-based), the main advantage of vCapTouch is its
high interactivity, flexibility, and intuition characteristics. By
employing the virtual objects, users may reference the real
touching behavior to obtain the synthetic touch sensing data
without specific coding skills, and prior knowledge could
determine the screen sizes, electrode numbers, different touch-
ing patterns, and recognized categories.

C. 3-D Objects in Virtual Environment

The import of 3-D objects plays a significant role in syn-
thesizing touch sensing data. To create the entity of touching
behavior, we utilized 3-D objects with mesh colliders in
Unity3D (Fig. 4). Since the representative touching entity is
the human hand, we mainly used the 3-D hand model to
introduce our method in the following sections. By accessing
and controlling the different hand joints, it is able to perform
various hand gestures, such as a fist or a peace sign.

D. Ray-Based Simulation to Generate the Raw
Touch-Sensing Image

In addition to the hand model object conducting the touch-
ing behavior, the other critical element to be simulated is

the touchscreen. We utilize the collision detection based on
Raycast functionality in Unity3D to form a detection matrix.
Specifically, we create cubes to simulate each electrode as the
detection point and arrange the cubes into the corresponding
matrix (e.g., 25 * 17). To entitle the value of each cube,
the Raycast functionality is performed by each cube. When
the 3-D object is located on top of the cube matrix, each
cube will return a distance information between the cube and
the 3-D object’s surface. Since the 3-D object’s surface has
different geometries, a distance matrix with different values
is subsequently formed as the simulated capacitive matrix. In
a real situation, capacitive touch sensing is able to perceive
the information about the touched object because the touched
area would cause different capacitance values. With different
hand gestures, the touchscreen electrode’s capacitance values
could reflect the geometry shape information from the touched
object. Therefore, we applied this way to virtually sense the
contacting object’s geometry shape information. In the virtual
environment, the distance information could also reflect the
3-D object surface geometry shape information according
to various distance values. For example, the place without
the object will not generate distance values related to the
nontouched area and will not have a capacitance value that
varies.

After obtaining the simulated capacitive matrix, via nor-
malization, the capacitive matrix could be converted into 0
to 255, which could be a raw synthetic capacitive touch-
sensing image. Fig. 5 illustrates ray-based collision detection
in Unity to simulate the capacitive touch-sensing image. The
detailed evaluation of synthetic image quality is performed in
Sections IV, IV-C, and IV-D. The generated capacitive touch-
sensing image contains the rough outline of the imported 3-D
object’s surface, e.g., the palm and fingers for a 3-D hand
model.

During this process, the generated touch-sensing images can
be labeled and annotated by indicating various hand gestures.
The placement of the virtual hand model could be flexibly
adjusted to form different hand gesture classes for further
training and recognition.

E. Augment the Raw Collision-Based Synthetic Image

In the virtual environment, collision-based detection is
capable of obtaining the 3-D hand’s rough outline to form a
raw touch-sensing image. Compared with the real situation,
since the human hand’s skin is soft and the joint bone/skeletal
point is stiff, the produced real capacitive touch-sensing image
typically has a lighter point with a skeletal point and a smaller
value of soft tissue. Additionally, based on the sensing princi-
ple, the stiff touching point will cause a higher value and affect
the surrounding capacitance variation because of capacitor
coupling. Therefore, to enable the raw synthetic capacitive
touch-sensing image to be close to the real capacitive touch-
sensing image, we developed an augmentation scheme to
enhance the fidelity of synthetic touch sensing data. The
augmentation scheme could be divided into three parts:stiff,
soft enhancement, and edge. (Figs. 6 and 7).

Soft Enhancement: Due to the soft tissue and stiff skeletal
point is prone to form a concave area in the soft tissue
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Fig. 5. Illustration of ray-based collision detection in Unity to generate the
raw synthetic capacitive touch-sensing image. (a) shows the basic detection
principle. The simulated screen contains several cubes (16 * 16 as an
example), and the Raycast function was applied to the cube to recognize
a simulated capacitive electrode. The shoot ray could detect the collision
between the cube and the 3-D hand and return the relevant distance value.
Thus, each cube would have a unique distance value and form a distance
matrix in (b). Following the normalization process, the matrix is converted
into a grayscale image, which is the raw synthetic capacitive touch-sensing
image in vCapTouch.

(a) (b) (c)

Fig. 6. Illustration of the augmentation scheme for the raw synthetic image.
The primary parts including the soft, still, and edge enhancement. (a) shows
one column of the distance matrix. The slope is calculated to find the edge as
well as the local minimum and maximum point. (b) Local minimum point of
the slope is recognized as the still area and is applied by stiff transformation
to increase the distance value. And the local maximum point’s value would
be decreased. (c) Edge enhancement introduction.

(e.g., the area between two finger joints) while contacting
the touchscreen. Thus, the area related to the soft tissue
would generate a smaller capacitive value. In our scheme, we
first check the raw synthetic capacitive touch-sensing image
column-by-column and derive the slope information based on
the difference between the two nonzero values. When the
slope is larger than zero, it is recognized that this point is

Fig. 7. Different synthetic images in the augmentation process. (a) Is the raw
synthetic capacitive touch-sensing image after ray-based collision detection.
(b) Is the image after soft and stiff enhancement? It is noted that some skeletal
areas have been enhanced with higher value, and the partial palm region is
processed with lower value. (c) Is the edge enhancement effect. (d) Is the real
capacitive touch-sensing image.

Fig. 8. Interactive design process between the developer and the synthetic
capacitive touch-sensing image. vCapTouch allows several design factors
to be accessed during the data synthetic process. (a)–(c) show different
electrode/pixel numbers and shapes of the simulated touchscreen. (d) shows
a relationship between a bigger hand model and the touchscreen. (e) and
(f) present the hand model with different position and rotation statuses. (g) and
(h) are different hand gestures.

in a concave area, and therefore, the raw synthetic capacitive
value needs to be decreased. To form a smoother enhancement,
we employed a nonlinear transformation that divided the raw
synthetic capacitive value by the slope to the fourth to reduce
the value.

Stiff Enhancement: The skeletal point is able to form a
protruding characteristic and leads to a higher capacitive value
when touching the screen. Following the same process, this
point should protrudeprotrude when the slope value from the
raw synthetic capacitive touch-sensing image is less than zero.
A nonlinear transformation is then applied to further decrease
the point’s value. The raw synthetic value is updated by
multiplying the square root of the slope.

Edge Enhancement: The edge enhancement aims to simu-
late the capacitor coupling situation of touching an object’s
edge. We detect the edge of the obtained outline and apply a
linear transformation to expand the simulated capacitive value
from the edge to the outer. We compared synthetic capacitive
touch-sensing images before and after the edge enhancement
[Fig. 7(c)].

F. Interactive Design for Automation Synthetic Dataset
Building

Unlike the mechanism and data-driven simulation, our
method is developed from the sensing result and inversely
designs a way to simulate the result. Traditional data syn-
thesis techniques have fewer controllable and accessible
factors, developers cannot independently design the synthesis
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Algorithm 1 Proposed Algorithm of Automation Synthetic
Dataset Building
Input: Original hand model position: Po(x,y,z) and Euler
angle of hand model attitude Eo(x,y,z); Target hand model
position and attitude: Pt(x,y,z) and Et(x,y,z); Sampling rate: f ;
Size of dataset: S;
Output: Synthetic touch-sensing image {Ci} =
{c1, c2, ..., cn, };

1: time← 0
2: size← 0
3: while size < S do
4: if time = time+ 1/f then
5: λ ∈ N (0, 1)

6: β ∈ N (0, 1)

7: P = Po + λ ∗ (Pt − Po)

8: E = Eo + β ∗ (Et − Eo)

9: c = vCapTouch
10: end if
11: time++
12: end while
13: {Ci} ← c

process, and the trial-and-error cost is high. Conversely,
proposed vCapTouch follows a digital twin-based development
paradigm, constructing the data synthesis process similar to the
real process. Developers would be provided with more acces-
sible factors during the synthesis. Fig. 8 presents the potential
factors to develop different synthetic capacitive touch-sensing
images, including the touchscreen shape, electrode/pixel num-
bers, and the spatial relationship between the hand model
and the touchscreen. It is only necessary to perform the
relevant operations in the virtual environment, making the data
synthesis process easier and more intuitive.

Therefore, we developed an automation algorithm to gener-
ate the synthetic touch-sensing images to assist the synthetic
dataset building (Algorithm 1). In a real situation, the position
and angle of each user’s touchscreen contact are various. Since
the main process of capacitive touch-sensing image synthesis
is completed by constructing the 3-D hand model and touch-
screen, the key idea of the dataset automation scheme is to
produce various rotation and position relationships between the
3-D hand model and touchscreen in the virtual environment.
Therefore, to enrich the distribution of the synthetic touch-
sensing dataset, we configure the original position and rotation,
as well as the target position and rotation value of the 3-D
hand model in the dataset generation algorithm. Altering the
3-D hand model’s position and rotation characteristics could
produce different touch positions and angles through random
factors with the set sampling frequency and form a rich
synthetic touch-sensing dataset distribution.

For each hand gesture, the hand model is designed with
the recognized gesture class at first correspondingly. Then,
the initial hand model position Po and angle Eo, and the
target position Pt and angle Et are indicated and input into
the algorithm. This sets the basic range of possible touching
areas. In this area, the hand model’s position and angle would

Fig. 9. Employed machine learning models introduction.

be updated by different time slots by using random factors of
λ and β. Therefore, it can obtain the distributions of synthetic
touch-sensing images regarding the various touched positions
and angles under any given hand gesture.

G. Recognition Model

To recognize the user’s touching behavior, the machine
learning model is adopted to learn the deep features of capaci-
tive touch-sensing images. It aims to classify different touching
hand gestures on the touchscreen. One of the significant parts
of ensuring a high-performance machine learning model is to
gain the distribution of recognized data that is as similar to
the distribution of training data as possible. In our method,
the prior knowledge of training data is created from the
virtual environment, and the recognized data is based on the
real capacitive touch sensing data. The incoherent difference
between the two source domains could possibly lead to a
potential difference in data distribution. Therefore, the feature
mining capability to construct a deep representation space to
guarantee a similar data distribution between the synthetic and
real capacitive touch-sensing images is significant.

In order to better capture the local and global features from
the synthetic capacitive touch-sensing image, we deploy a deep
CNN model to be trained purely by the synthetic capacitive
touch-sensing image. Fig. 9 presents the employed deep CNN
model. A total of nine convolutional layers are deployed in the
recognition model. Several different max-pooling operations
are used in different convolutional layers to effectively reduce
the spatial dimensions of the feature map while retaining the
important feature information. The final output through the
fully connected layers is the length of the recognized object
category number.
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Fig. 10. Evaluated touching hand gestures in experiment. It shows five types
of static finger gestures, including the hand lying on the screen, vertically put
on the screen, hand side touching the screen, thumb and middle fingers, and
thumb and pinky on the screen.

IV. EVALUATION

The experiments that were conducted assessed the quality
of the generated synthetic capacitive touch-sensing image
compared with the real capacitive touch-sensing image and
evaluated the recognition ability of synthetic data compared
to real data. To validate the generalizability of the proposed
method, we also tested the synthetic touch-sensing image
method applied to resistive touchscreen devices, i.e., the
piezoresistive sensor array.

A. Configuration

Fig. 10 introduced the tested hand gestures. We designed
five types of static finger gestures, including the lie, down,
side, thumb and middle, thumb and pinky. A total of eight
participants were recruited to contribute to the real capacitive
touch-sensing image dataset. Following the instruction, the
user puts the fingers on the screen with designated gestures
(Fig. 11). The process was repeated 10 times, and each time,
the users followed their natural pattern of placing the finger
to capture 10 real touch-sensing images by the touchscreen.
We then collected 8 participants * 10 times * 10 images *
5 gestures = 4000 real touch-sensing images dataset.

1) Capacitive Touchscreen: A capacitive touchscreen-
based smartphone (LG Nexus 5) was utilized to capture
the real capacitive touch-sensing image. We followed the
common approach to access the controller with a customized
kernel and obtained the capacitive touch-sensing image of the
touchscreen [43]. The touchscreen size is 4.95 inches with
27*15 capacitive detection electrodes, which specify the size
of the generated real capacitive touch-sensing image.

2) Resistive Touch Device: Additionally, we also employed
a resistive touch-sensing device to validate the effectiveness of
the proposed method. It utilized piezoresistor pressure sensing
to perceive the touched object. It consists of several pressure
sensors, each with a different force applied. So, it can also
derive a grayscale image according to the normalization. We
therefore tested on the resistive touch device to assess the
cross-device generalizability of the proposed method. Our
experiment involved a thin-film resistive pressure sensor of
model M1616 (Fig. 12).

B. Synthetic Dataset

We configured various 3-D hand model positions and
rotations in the virtual environment to construct the synthetic
capacitive touch-sensing image dataset for machine learning

Fig. 11. Real dataset collection illustration with capacitive touchcreen.

Fig. 12. Piezoresistive sensors-based touch sensing device and related
grayscale image.

model training to generate 400 synthetic images for each
hand posture. Thus, the total synthetic capacitive touch-sensing
image dataset would be 400 * 5 = 2000 images. Since the edge
enhancement in Section IV-D was designed for simulating the
capacitor coupling situation, the synthesis for resistive touch
sensing data did not involve the edge enhancement part.

C. Quality of Synthetic Data

We first evaluate the similarity between the synthetic data
and real data to test the quality of the synthetic image from
vCapTouch. The mean squared error (MSE) and structural
similarity index measure (SSIM) were calculated between
the synthetic images and the real images. To compare the
proposed method with baseline methods, we also employed
other images synthesis methods including the GAN [5], condi-
tional GAN (CGAN) [40], conditional variational autoencoder
(CVAE) [41], and conditional diffusion model (CDM) [42].
Since the baseline methods are data-driven, we used 80%
of the real dataset for model training and generated the
corresponding synthetic images (400*5) for testing with the
remaining real images. Similarly, the synthetic images from
the vCapTouch maintain the same size as the synthetic images
dataset to calculate the MSE pixel by pixel. We also compared
the result between the original synthetic capacitive touch-
sensing images (i.e., w/o the augmentation scheme) and the
ultimate synthetic capacitive touch-sensing images (i.e., with
the augmentation scheme). Each synthetic image from a
different method was compared with each real image to obtain
the MSE and SSIM metrics. We tested five classes of gestures
and calculated the average results. The result is shown in
Tables I and II.

From the result, it is clear that the synthetic images from
the proposed methods have the lowest MSE value and the
best similarity with real images. All the baseline methods are
capable of learning a data distribution from the trained real
data. Moreover, SSIM considers more structural information
between two images. The result from SSIM also shows that the
synthetic images from the proposed methods keep the highest
similarity to the real images. However, due to the character-
istics of capacitive touch-sensing images, the grayscale image
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TABLE I
MSE RESULTS OF COMPARING THE SYNTHETIC IMAGES WITH REAL

IMAGES. SEVERAL BASELINE METHODS ARE INVOLVED

IN THE EVALUATION

TABLE II
SSIM RESULTS OF COMPARING THE SYNTHETIC IMAGES WITH REAL

IMAGES. SEVERAL BASELINE METHODS ARE INVOLVED

IN THE EVALUATION

Fig. 13. Results of recognizing the real touch data using the model purely
trained by synthetic data. (a) Capacitive. (b) Resistive.

usually has a relatively simple distribution and fails to mine
the deep features of touch-sensing images. Compared with
other approaches, the data-driven methods are not able to offer
a good performance. Conversely, the vCapTouch utilized the
digital-twin simulation to produce more fine-grained synthetic
images. Moreover, we compared the method with and w/o
the designed augmentation scheme in Section III-E. It is also
notable that the augmentation scheme could further increase
the fidelity of synthetic images.

D. Hand Gesture Recognition Performance

One of the biggest advantages of the proposed method is its
zero-cost data synthesis process for touch sensing. Compared
with other generative data synthesis methods (e.g., GAN),
the data-driven generative method still requires a certain real
dataset as the premise to gain the real data’s prior knowledge
and distribution. Thus, dataset collection volunteering and
device usage require a high human resource cost. So, we only
evaluated the recognition performance of vCapTouch, which
utilizes the synthetic data for the machine learning model

Fig. 14. Results of model performance with different amount of real data
for fine-tuning.

(introduced as in Section III-G) training and real data for
recognition to assess the effectiveness of the proposed method.

All of the synthetic images were employed for model train-
ing. All the real images were used as the testing dataset. The
trained model was tested on each user’s real data, and the aver-
age result was calculated. We repeated the experiment three
times to get the average accuracy. The evaluation employed
the PyTorch deep learning framework for building the machine
learning model. The laptop with Intel Core i5-12500H CPU
and Nvidia GeForce RTX 2050 GPU was utilized. The Adam
optimizer was employed during the training process, and the
batch size was 5. The training epoch was 200.

Fig. 13 presents the confusion matrix of the recognition
model. Synthetic data purely train the model and recognize the
real data could reach the accuracy of 77.56% and 88.57% for
capacitive and resistive touch-sensing, respectively. Basically,
the recognition performance of resistive touch-sensing could
outperform the capacitive touch-sensing. Both recognition
capabilities did not show an excellent performance compared
with using real data for model training [4], [5], [6]. This is
because there is an inherent difference between the source data
(i.e., synthetic images) and target data (i.e., real images), which
results in different data distribution and enables the trained
model to present limited generalizability on domain transfer-
based recognition.

E. Domain Transfer and Generalizability

1) Cross-Domain From Synthetic Data Training to Real
Data Recognition: To better facilitate the usage of synthetic
images training the recognition model, we evaluated the
pretrain and a fine-tuning process to improve the performance
of the trained model purely by synthetic data. Thus, the model
was pretrained by synthetic images from vCapTouch. Then,
the weights of convolutional layers were frozen, and a small
number of real images fine-tuned the fully connected layers to
realize the domain transfer in a supervised way [21]. During
the experiment, a certain number of real images were used for
fine-tuning, and the remaining real images were used for the
test. Fig. 14 shows the performance results.

We tested 2, 4, 6, 8, and 10 real images extracted from the
real dataset of each type of gesture for each user separately.
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Fig. 15. Confusion matrix of model performance with different amount of real data for fine-tuning. (a) Capacitive with 2 images each user for fine-tuning.
(b) Capacitive with 10 images each user for fine-tuning. (c) Resistive with 2 images each user for fine-tuning. (d) Resistive with 10 images each user for
fine-tuning.

Therefore, there are 5*2*8=80, 5*4*8=160, 5*6*8=240,
5*8*8=480, and 5*10*8=400 real images used for the prac-
tical fine-tuning process. Fig. 15 gives the various confusion
matrices with different amounts of real images used. From the
result, it is evident that with the amount of real data utilized,
the model is able to increase its recognition capability and
complete the domain transfer of different data source domains.
Generally, both the capacitive and resistive-based touch sens-
ing would improve more, while only two images from each
user’s gesture were added. For example, the recognition model
accuracy of capacitive touch-sensing is increased from 77.52%
to 89.50%. With four more real images used, the model can
reach over 95%. The same situation exists in resistive touch
sensing. With two images from each user’s gesture applied for
fine-tuning, the accuracy is raised from 88.57% to 95.79%.
Thus, the results demonstrate the model’s fast domain transfer
ability, which is purely trained by synthetic data with only a
few real data sampled for fine-tuning. From the result, though
using pure synthetic data to train the model did not produce an
excellent result, only a few real data are needed to improve the
model performance to an excellent result via domain transfer.
Thus, the proposed data synthesis method reduces the dataset
collection cost and time and improves efficiency compared to
sampling and processing the traditional large real dataset.

2) Cross-Domain and Cross-Gesture From Synthetic Data
Training to Real Data Recognition: In addition, since the
synthetic data from vCapTouch is able to reduce the cost of
training dataset collection and maintain the high flexibility to
design various hand gestures, it is also significant to test the
generalizability not only cross the domain but also the target
gestures. We pretrained the model with two hand gestures
classification (i.e., the lie and down) to ensure a feature-
extraction capability of the model and recognize another
three target hand gestures (i.e., side, thumb&middle, and
thumb&pinky) as the downstream task. Similarly, a small
amount of real data of three target hand gestures was employed
to fine-tune the pretrained model and tested on the remaining
real data. The whole evaluation process is the same as the one
introduced above.

Figs. 16 and 17 presented the results of the fine-tuning
test. From the result, the model pretrained by synthetic data
is capable of maintaining a good feature extraction and is

Fig. 16. Cross-gesture results of model performance with different amount
of real data for fine-tuning.

prone to be transferred into target data distribution, even if the
corresponding synthetic data is not involved during the training
process. With only 2 to 4 images from each user’s gesture
acquisition as the training dataset, the pretrained model could
reach over 90% accuracy on target gesture recognition with
capacitive and resistive touch-sensing devices simultaneously.

Therefore, the domain-transfer test on eight participants
proved our approach keeps a practical application potential
that allows the developer to use the digital twin-based touch
sensing data synthesis for model pretraining and then capture a
tiny amount of use’s real touch data for fine-tuning. Since only
a small amount of real data is required, it omits the traditional
large dataset collection process. It could be performed at the
user-end electronics very quickly (e.g., a calibration process
in a smartphone).

V. DISCUSSION

A. Spatial Relationship Between 3-D Objects and
Touchscreen

As the cost of touch-sensing devices becomes lower, we are
able to obtain more customized capacitive touchscreens [9]
of different sizes, different electrode sparsity, and number of
electrodes in the real world. Our method primarily considered
intuitively building the position relationship as the 3-D object
can be manipulated with different gestures, perspectives, and
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Fig. 17. Confusion matrix of model performance with different amount of real data for cross-gesture fine-tuning. (a) Capacitive with 2 images each user for
fine-tuning. (b) Capacitive with 10 images each user for fine-tuning. (c) Resistive with 2 images each user for fine-tuning. (d) Resistive with 10 images each
user for fine-tuning.

locations. Since vCapTouch mainly adopts a digital twin-like
simulation, the spatial relationship between the 3-D object and
touchscreen requires careful design, including the 3-D object
position related to the touchscreen and the size of the 3-D
objects and touchscreen. For example, a bigger touchscreen
with a relatively small hand or a bigger hand with a relatively
tiny touchscreen. This requires the synthesis of the capacitive
touch-sensing image, which considers not only the touching
relationship but also the practical device status. Our method
relies on the interactive way, which is prone to modify the size
of the touchscreen and 3-D object, and also easy to alter the
electrode numbers and sparsity, quickly forming a simulation
close to the real situation.

B. Reconstruction of 3-D Objects

There are diverse approaches to obtaining and importing
3-D objects, such as CAD design, scanning-based methods,
3-D point cloud conversion, and so on. However, this method
mainly focused on the texture and mesh building to create
a realistic Reconstruction. The core idea used in vCapTouch
is based on the collision detection via Raycast functionality
in Unity. Since the Raycast mainly simulated the detection
principle of the infrared sensor, the transmitted ray would be
impeded by the obstacle. A physical engine would simulate
this phenomenon by constructing the collider of the 3-D object
as the physical entity. Therefore, one of the most significant
premises for using the functionality is to ensure a physical
entity of detected 3-D objects.

In addition to the physical characteristics, the surface
fineness of the 3-D object is also necessary for capacitive
touch-sensing image synthesis. A simulated electrode with
a ray transformed the high-dimension geometric information
into low-dimension distance information. Thus, it proposes
a higher requirement for the reconstruction of 3-D objects.
A high-precision 3-D scanner or careful manual design is
required.

C. Extending the Data Synthesis to More Types of Object
Recognition

In this article, we primarily assessed the touchscreen’s
human hand gesture recognition. Nevertheless, the research
of touch sensing has gradually extended to more daily object

recognition. For example, Capacitivo [11] extended capacitive
touch sensing to nonmetallic object recognition. Fabricated
customized electrodes can recognize more common daily
objects such as glass, fruit, and food. Other contact-based
object (e.g., piezoresistance sensor arrays) methods also make
object recognition more ubiquitous and pervasive. Our method
is not limited to detecting conductors and metallic object
recognition, and we believe that more daily object recognition
system development could benefit from our data synthesis
method. For different sensing principles, as long as the
sparse electrodes are utilized, we could still rely on collision-
based detection to obtain the basic low-dimensional outline
information and design the specific augmentation scheme to
complete the relevant data synthesis.

As introduced, ray-based detection lays the core part
of touch-sensing image synthesis. The main employed
information is its returned distance value. We may argue that
this type of detection could have more prominent space for
data synthesis in object or motion recognition. Xia et al. [21]
realized a distance-based hand motion recognition data syn-
thesis, utilizing various ray-based collision detection to form
a distance variation matrix. Such an idea is also feasible for
detecting human body motion with a distance sensor placed
on the body joint to detect the distance variation between body
limbs.

D. Potential Application Insights

vCapTouch introduced a novel data synthesis method to
generate the capacities image, focusing on interactivity and
intuition characteristics. We also envision various directions
for applying this technique to the various communities. We
also open-sourced the developed vCapTouch as a Unity pack-
age in Github for further interested utilization.1

1) Education With VR/AR: VR/AR systems are known
for their immersive, interactive, and realistic characteristics,
recognized as mainstream technical means in skill learning and
education [44]. However, most VR/AR systems concentrate on
communication and synchronization in teaching and learning.
We should have figured out more work focusing on the
sensor rationale with VR/AR systems for education. On the

1GitHub Link: xxxxxxx will be uploaded later.
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contrary, vCapTouch is a great tool for novices to study touch
sensing-related knowledge. Since the main work is completed
in the virtual environment, it is open to be combined with
a VR/AR system to construct an immersive and interactive
study environment. By manipulating the 3-D object in the
virtual space, the novice is able to understand what kind of
information will be acquired by touch-sensing. Although the
vCapTouch did not follow a capacitive or resistive sensing
mechanism, namely, simulate the capacitance variation with
human skin, it still provides a good opportunity to understand
the basic sensing format and outputs.

2) Plugin and Toolkit for Interactive Machine Learning:
Interactive machine learning allows a human-in-the-loop pro-
cess in machine learning development and emphasizes the
experiences of users [38]. The vCapTouch could also be
utilized as a plugin and toolkit in sensor-based machine
learning system development. Since the method represents its
interactive data generation process, it would introduce more
user experiences during the dataset collection period. Based
on the vCapTouch, we can create the plugin with a concise
interface to allow the users to access the data synthetic process
better and utilize the synthetic dataset to develop the machine
learning system with lower cost and higher efficiency. Besides,
the vCapTouch could also be combined with other sensor
simulation approaches, for example, the IMU [20], radar [18],
and light [23], build a more comprehensive sensor simulated
toolkit facilitating the sensor-based machine learning system
development.

E. Novel Interactive Data Synthesis Direction

As mentioned before, the data scarcity issue has already
been recognized as a severe bottleneck that prevents the
generalizability of the machine learning model. The typical
method utilized the idea of machine learning that employed
the known dataset to learn the prior data distribution and
generate the synthetic data from the learned knowledge space.
This approach places a greater emphasis on completeness of
knowledge and thus requires the dataset of prior knowledge
to be diverse and large-scale, which still faces enormous chal-
lenges currently. Our method presents an alternative way of
generating the data through the physical engine. It conducted
little concern about the sensing principle but focused on the
sensing result and simulated the data accordingly. Relying on
the virtual environment, virtual avatar, and virtual objects, the
data synthesis process would be intuitive and more suitable for
developers with little skill. We are convinced that this method
supports broader applications in machine learning, meta-verse,
prototyping, and other fields.

F. Lack of More Detailed and Depth Evaluation

This article has primarily focused on the use of capac-
itive touch-sensing images as the training dataset for
machine-learning-based object recognition. The evaluation has
concentrated on accuracy performance and generalizability
validation, but a more in-depth evaluation at the signal level,
such as exploring the boundary limitation on the smallest
pixel size of synthetic capacitive touch-sensing images, is
needed. Some works have utilized QR-code format fiducial

tags for tangible recognition, which clearly require a more
refined perception capability of the touchscreen. Therefore, it
is crucial to explore the boundary conditions related to various
touchscreen devices, as this could significantly enhance the
perception capability of the touchscreen and thereby improve
the object recognition process.

VI. CONCLUSION

This article presented an alternative touch sensing data
synthesis method, vCapTouch. Following a digital twin-based
approach, the virtual touchscreen and 3-D objects are con-
structed in the virtual environment, Unity3D. We can convert
the surface geometry information into a distance matrix by
employing ray-based collision detection. A designed aug-
mentation scheme can transform and enhance The synthetic
touch-sensing image. The generated images could train a
machine learning model and recognize the real touching
behavior without large real dataset collection. vCapTouch
presents a novel, low-cost, highly accessible, interactive touch
sensing data synthesis method.
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