IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 74, 2025

9508514

Open-Source Virtual IMU Sensor Platform for
Developing a Customized Wearable Human
Activity Recognition System
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Abstract— Building a wearable human activity recognition
(HAR) system follows complicated steps, making the wearable
HAR system development time-consuming, cumbersome, and
error-prone. One of the critical challenges is its dataset collection,
which typically requires a group of people to perform specified
motions for an extensive period to capture data. Recently, cross-
modal virtual inertial measurement unit (IMU) data generation
from 3-D avatars has been recognized as a key solution to address
the costly and laborious sensor dataset collection for HAR system
establishment. However, the utilization of virtual IMU data still
faces the challenge of tedious steps, including expensive com-
puting resources, model training, and domain transfer, among
others. This article presents a novel platform employing the
input of 3-D avatar motion sequences. Combined with the virtual
IMU data generation mechanism, the motion modification-based
virtual IMU data augmentation approach is designed to generate
the virtual IMU training dataset. The platform supports various
sensor placement selections, data processing, model training, fine-
tuning, and deployment functionalities. The proposed platform
integrates the whole process of developing a wearable HAR
system. Due to the fewer requirements in the real world, it could
enable the wearable HAR system building to become low-cost,
customized, and contribute to HAR system prototyping and
related application scenarios.

Index Terms— 3-D avatar, human activity recognition (HAR),
platform, virtual inertial measurement unit (IMU), wearables.

I. INTRODUCTION
EARABLE human activity recognition (HAR) system
has been drawing close attention in building a natural
and seamless interface between the human and computing
system, such as in entertainment, safety monitoring, rehabilita-
tion, and fitness tracking systems [1], [2], [3]. The mainstream
HAR system utilized the inertial measurement unit (IMU) to
capture the human motion data and recognize the activities
via a machine learning model. The corresponding technique
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routine has been widely applied to enormous end-user elec-
tronics, including smartphones, smartwatches, smart glasses,
and so on [4], [5], [6], [7].

Though traditional wearable HAR systems have been real-
ized to a certain extent with successful applications and
have presented huge benefits in assisting users’ daily lives,
demands from users are moving toward greater variety. For
example, as various users may have different exercise habits
and body conditions, the wearable HAR system of fitness
tracking is required to recognize motions based on the user’s
distinct needs. Therefore, the end-user’s requirements for such
sensor-based machine learning systems are becoming increas-
ingly diverse, and the system needs to recognize objects or
motions that can be customized and personalized. Generally,
the traditional wearable HAR system development follows a
typical technical chain from dataset collection, data process-
ing, model training, and testing to output an ultimate model in
practice [8], [9]. The process involves several steps, such as
individual recruitment, data collection, annotation, and model
development, resulting in cumbersome, inefficient, and error-
prone characteristics. It makes the development face several
difficulties for the end users in establishing a customized
HAR system. In particular, collecting the dataset has been
recognized as the most challenging part [10]. As a time-
consuming process, data collection is often laborious and
has high resource demands. End users usually fail to create
their own dataset for the wearable HAR system building and
utilizing to satisfy their personalized needs.

Different from the vision-based system, public wearable
IMU-based datasets have relatively small sizes and numbers
of motion types, making it hard to apply the model in
more generalized scenarios. Existing solutions either miti-
gate this acute problem from the perspective of recognition
algorithms or HAR system development tooling techniques.
Specifically, zero-shot or few-shot learning attempts to apply
already pre-trained models to additional motion recognition
via the knowledge transferring approach [11], [12]. However,
the ability of the IMU data representation still limits the
ability of such methods, and the existing research results have
merely proved the effectiveness of a few simple types of
motions. In addition, to lower the development threshold for
the wearable HAR system, the integrated tooling or engineer-
ing platform techniques would contribute to a fast and simple
development process [13], [14]. Thus, researchers have also
proposed development tools for easy development, including
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data annotation software, model training codes, and visualiza-
tion tools [16], [17]. Nevertheless, these methods still adopt
the traditional HAR system development chain. It is difficult
to bypass the laborious, costly, and bulky characteristics of the
real data collection process.

On the contrary, cross-modal sensor data generation has
received much attention recently [18]. The generation pipeline
from the video to 3-D avatar motion to virtual IMU data
demonstrates new capabilities in data collection for the wear-
able HAR system [19], [20]. This approach enables the
introduction of large video datasets into the IMU dataset
to address the data scarcity issue and improve the wearable
HAR system’s performance. The virtual IMU data has been
utilized in sign language recognition, multimodal HAR system
development, and text-based IMU synthesis [21], [22], [23].
However, existing virtual IMU applications aim to improve
the generalizability characteristics of HAR by expanding the
size of existing datasets, showing the constrained applications.
How to further extend the application of virtual IMU to
improve more HAR scenarios is not well explored, especially
for utilizing the low-cost and flexible characteristics of the
virtual IMU data generation process.

Therefore, in this article, we proposed an open-source
platform using virtual IMU data to develop a customized HAR
system on the user end (Fig. 1). It supports the users in indicat-
ing personalized recognized motions and includes the dataset
generation and model training process to build a wearable
HAR system. Compared with the traditional technique chain,
development based on our platform is realized merely in the
software environment. Users can select the sensor locations
and numbers with great flexibility, and recruiting real user
groups for the collection of large real datasets is eliminated.
At the user end, a few-shot real data are collected to fine-tune
the trained model as a calibration process to establish the
corresponding customized wearable HAR system. Section II
introduced the related work, and Section III presented the
details of platform building. We also conducted several exper-
iments to demonstrate the feasibility of using the platform
to design a practical wearable HAR system, as shown in
Section IV.

II. RELATED WORK
A. Generalized and Customized HAR System

IMU-based HAR, as the pillar of natural and ubiquitous
activity recognition systems, has already been applied to
numerous commercial-of-the-shelf electronics, such as smart
watches, smart rings, and glasses [4], [5], [6], [7]. Commonly,
the developed wearable HAR system needs to overcome the
challenge from the changing position of attachment, the differ-
ence in users’ motion habits, and individual characteristics [9],
[24]. Thus, it requires the wearable HAR system to maintain
high generalizability. At the data generation level, the synthe-
sis sensor data can effectively increase the training dataset,
raising the performance of the machine learning model. For
example, Zilelioglu et al. [25] presented a semi-supervised
generative adversarial network (GAN) to solve the problem
of the scarcity of annotated IMU data in the wearable HAR
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Fig. 1. Comparison between the traditional HAR system development process
and the proposed platform for customized HAR system development using
virtual IMU data.

system. Um et al. [26] used the signals of Parkinson’s patients
and proposed to use several data modification approaches
for the data augmentation, including time-wrapping, rotation,
and cropping. The modified signal mixed with the original
signal could enhance the trained CNN model for Parkinson’s
disease monitoring. In addition, at the data representation
level, Su et al. [24] designed a disentangled method for IMU
data using the GAN model to address the intra-class variability
issue and disentangled the dataset of the wearable HAR system
into intra-class invariant features and redundant features, thus
improving the generalization ability of the system. Xia et al.
[27] introduced a multiple-level domain adaptive learning
model with information theory to align the distribution of
both virtual IMU and real IMU data representation. From
the training approach aspect, incremental learning has brought
new solutions and gained attention to help the trained model
to adapt to various scenarios [28], [29], [30]. For example,
Hou et al. [29] introduced a two-stage simultaneous augmen-
tation of feature and class, which employed regularizers for
model inheritance and reuse. Hu et al. [28] presented the
feature incremental random forest (RF) method to improve
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the model’s performance on new features. It involved a mutual
information-based strategy to enrich the diversity of the RFs,
and a feature incremental growing mechanism assisted in the
accuracy of each decision tree.

On the other hand, research on customization and per-
sonalization for activity recognition has been continuously
proposed, particularly in the human-computer interaction sce-
narios. The zero- and few-shot learning create the alternative
solutions for applying a pre-trained machine learning model
to the front-end applications with the increased customization
factor [11], [12]. For example, Su et al. [31] showed a few-shot
learning-based lip language reading in a personal smartphone
via the in-front camera. Xu et al. [32] developed a wrist-worn
smartwatch-based hand gesture customization approach for
end users. The collected hand gesture IMU dataset was utilized
to pre-train the recognition model, and few-shot learning was
adopted to fine-tune the model and realize a user-centered
hand gesture recognition process. Steuerlein and Mayer [33]
employed the GAN model to assist the capacitive image
generation in training a customized model for the tangible
interaction with a touchscreen in a tablet. Therefore, enhancing
the customization of HAR systems has gradually become the
research focus. However, the development of existing HAR
systems customization is based on real IMU datasets, which
still require people to contribute many motions and data. In this
article, we focus on exploiting virtual IMU and leveraging
its low-cost and easy-to-generate characteristics to develop its
customized HAR system.

B. Cross-Modal Virtual IMU Data Utilization

The virtual IMU data could be extracted from a 3-D avatar
motion sequence in the virtual environment [36]. It follows a
cross-modal pipeline that extracts the human skeleton infor-
mation from 2-D human motion video and reconstructs the
3-D motion by a 3-D avatar [19]. Generating virtual IMU
data provides a more convenient, low-cost, and intuitive data
generation approach compared with traditional data-driven
methods (e.g., GAN-based data synthesis). Virtual IMU pro-
vides additional data sources to expand existing HAR public
datasets, such as IMUTube [19] and sign language recogni-
tion [21]. It therefore demonstrates the advantage of model
generalizability enhancement.

One of the major bottlenecks in applying virtual IMU is
the quality of virtual IMU data. The mainstream video-based
methods for generating 3-D motion sequences are affected
by video occlusion and quality. In addition, the position of
the wearable IMU and noise issues also affect the difference
between virtual IMU and real IMU data. Therefore, improving
the data quality and application of virtual IMU has become
the focus of many researches [18], [37]. For example, Xia and
Sugiura [18] proposed a virtual spring model to augment the
virtual IMU data from a few motion sequences as input. The
designed spring model could utilize the physical simulation
characteristic to compensate for and augment the virtual IMU
data quality. Generating the virtual IMU data has been under
constant scrutiny. However, the exploration of its application
still needs to be expanded to augment existing public datasets
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and enhance the generalization performance of recognition
models. In this article, we employed a method of augment-
ing virtual IMU data by modifying the 3-D avatar motion
sequence and integrating the function within the HAR system
development platform.

C. HAR Development Tools and Platforms

To better facilitate the development of the wearable HAR
system, researchers have contributed to the work of tooling
techniques to help reduce the difficulty and tediousness of the
development process. Haladjian [17] presented an integrated
development environment for wearable HAR system design.
They utilized the MATLAB script for packaging-related recog-
nition algorithms and test functions aimed at lowering the
barrier in building the IMU-based HAR system. Similarly,
Schipor and Vatavu [38] developed a software tool to help the
experiment-centered design in wearable gesture recognition.
It can support gestures designed by different equipment via
HTTP and WebSocket communication. Karolus et al. [39]
introduced a toolkit to facilitate the electromyography-based
human gesture recognition system for human—computer inter-
action. The designed toolkit could connect to the electrodes,
define the gesture, and be calibrated by users. After collecting
the data, the toolkit also supported training the model and
classifying the gesture in real-time. Ding et al. [40] presented a
free-weight exercise monitoring platform. The system utilized
the radio frequency identification (RFID) tag on the dumbbells
and the Doppler shift profile of the reflected backscatter signals
to recognize the difference motion exercise. It integrates signal
preprocessing, data segmentation, recognition, activity post-
assessment, and other crucial steps.

In summary, the tools facilitating the wearable HAR system
development normally have the basic steps of data collection
and processing. The machine learning-based platform needs
the steps for model training and testing. Moreover, the feed-
back on model accuracy is vital for the developers to adjust
the system parameters and configuration during the trial-and-
error process. However, the current platform usually operates
under the premise of the existing off-the-shelf datasets and
provides the developers with few functions to adjust, thus less
flexibility. Once the dataset is flawed or unsatisfactory, the
developer has to recruit personnel and collect datasets again,
which is time-consuming and labor-intensive. This article pre-
sented an alternative solution relying on the ease of accessing
the virtual IMU data rather than traditional real IMU data
collection. The development of the virtual IMU data-based
HAR system promises a new paradigm for wearable HAR
systems prototyping and development.

III. PLATFORM DESIGN
A. Pipeline

Generating the virtual IMU data from the 3-D avatar motion
could be a digital twin of capturing the real IMU data from
the human body. Thus, our platform inputs the 3-D motion
sequences of desired recognized activities as the source of
virtual IMU data. The entire platform was developed based
on the game engine Unity3D. Fig. 2 shows the pipeline of
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the proposed platform. The virtual IMU data is derived from
the kinematic equations [e.g., (1)]. The specific body limb is
accessed to get the position p € R? and rotation quaternion
g € R* The acceleration signal could be calculated by
secondary differential [36]

Pi—ar + Pryar —
At?

* 2pt

at) =q (1) ® ®q() (D
where the a(?) is the calculated acceleration data as the virtual
IMU acceleration data. The g (¢) is the quaternion of the body
limbs, and ¢*(¢) denotes the conjugate of the quaternions. p;
represents the position of the body limbs in a motion sequence.
At is the sampling time interval that can control the virtual
IMU data sampling rate. The ® represents the quaternion
multiplication operator.

The wearable HAR machine learning model in the proposed
platform is trained based on the virtual IMU dataset. Since
there are normally differences between the virtual IMU data
and real IMU data (e.g., the various wearing positions and
the noise of 3-D motion conversion), a transfer learning-based
model fine-tuning approach is adopted to compensate for the
data domain difference between the virtual IMU data and real
IMU data. We allowed the user to provide a small amount
of personal real IMU data to adapt the pre-trained machine
learning model with virtual IMU data to recognize the personal
real activity. Thus, a real IMU device interface is also designed
in the platform and is able to gather a few-shot real data for
model transfer.

B. 3-D Avatar Motion

The ways of generating 3-D avatar motion sequences are
varied and include manual design, reconstruction using the
motion capture (MoCap) device, cross-modal approaches, and
the text-based generation method [41]. To ensure a general
imported motion file format, the developed platform is able
to support two kinds of motion files to allow the 3-D avatar
to conduct the motion in the virtual environment, i.e., the fbx
file and json file with the skeleton information. The fbx file
has more complete information on the 3-D avatar’s movement,
including the skeletal rotation data and mesh information. It is
the common output file format of the commercial off-the-
shelf (COTS) MoCap device and human motion generation
software.

Illustration of the proposed platform for customized HAR system development based on virtual IMU data.

C. Motion Modification-Based Virtual IMU Data
Augmentation

Since the input 3-D motion sequence length affects the
size of the virtual IMU dataset, augmentation of the virtual
IMU data is necessary in customized HAR system building.
In this section, we presented a data augmentation method for
virtual IMU data. Referring to the situation in the real world,
when an individual performs a motion, the real IMU data
generated from the same motion have different amplitudes and
speeds. Therefore, the proposed virtual IMU data augmenta-
tion method focused on simulating the intra-difference of IMU
data caused by different users for the same motion.

In the virtual environment, the single body-limb movement
of a 3-D avatar can be represented by rotation and position.
To animate a human motion, rotation plays a more important
role. Thus, by modifying the rotation attributes of the 3-D
avatar’s joints in the virtual environment, the original avatar’s
motion could be altered to generate more 3-D motions and
obtain the augmented virtual IMU data.

To enable the generation of intra-difference for the 3-D
avatar, the amplitude of the joints is modified by using
multiplication factors and subsequently altered by the filters
to produce more variability of the motions. The imported
motion sequence {x;} = {x;, x2, x3, ..., x;}, where 7 is the total
number of motion frames. In this article, the motion sequence
is represented by the avatar joint rotations, so {x;} € R/*?,
where j is the number of joints, and d is the dimension of
the rotation representation (here we used the Euler angle and
d is three). We first change the animation by modifying the
amplitude of the joint motions, and a multiplication factor is
set to modify the amplitude of the 3-D avatar’s joint motion
linearly.

We then utilize filters to modify the joint rotation data.
The kernel’s design of the filter can be considered a function
that weighs and manipulates the input signal. Different ker-
nels can change the characteristics of the input signal, such
as frequency components, amplitude, and phase. Therefore,
we consider the motion sequences as input signals and change
their frequency and time domain information by designing
different kernels to increase the intra-difference of the virtual
IMU data. The method of modifying the motion sequence can
be expressed by the following equation:

x?xis — Ol{k} ® xiaxis

2)
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where « is the amplitude change factor. We have referenced the
human motion ergonomic limitation to ensure that the avatar’s
3-D animation is realistic and natural [42]. The value of « is
set between 0.5 and 1.6, where k is the filter kernel, and i and
axis denote the joint sequence number and the joint’s axis to
be modified, respectively.

To verify that the filter can implement the modification of
the joint data and obtain the new 3-D motions, we designed
different parameter types (increase, decrease, convex, concave)
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Fig. 5. Virtual IMU data generated by the proposed data augmentation
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a filter with different parameters.

for the kernel with a window size of 5. Increase means that
the parameter in the window is gradually growing, decrease
represents that the parameter is reducing progressively, and
convex implies that the parameter is growing and then reduc-
ing. Concave means that the parameter is reducing and then
increasing. These four parameter types can compose different
filters, so we use these four parameter types of filters to
verify whether they can complete the joint data modification.
Fig. 3 shows the overview comparison between the initial and
modified motions. The kernel parameters, the parameter types,
and the modified joint data are shown in Fig. 4. Fig. 4 shows an
example of avatar motion. The proposed method could modify
the major moving limbs to produce augmented movements and
virtual IMU data. Thus, due to the modification of the joint
data by the filter, it could result in a noticeable change in the
right hip motion of the 3-D avatar. In addition, we artificially
set the maximum motion limits of the avatar’s joints in the
virtual environment so that the modified motion sequences did
not show non-natural motion [37]. The example of the virtual
IMU from the original motion versus the modified motion
is shown in Fig. 5. The developed data augmentation method
simulates the intra-class variability of movements between real
people. This method is simple and efficient, modifying the
limb movement of the 3-D avatar based on the position of the
wearable sensors to create a greater distribution of movements,
thus generating more virtual IMU data.

D. Transfer Learning-Based Model Training From Virtual
IMU to Real IMU Data

The generated virtual IMU dataset was subsequently
employed to train the machine learning model. The IMU
signals from the virtual and real domains differ in acceleration
signal amplitude, coordinate system transformation, and noise
error. Therefore, we designed the model structure, which is
prone to perform a domain adaption-based transfer learning
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from the virtual to the real domain. Inspired by self-supervised
learning, the whole transfer learning follows the pre-trained
and fine-tuned process [43], [44]. The virtual IMU dataset
is first used to train the model in a supervised way, and
the model’s partial weights are frozen, and a few layers are
fine-tuned by real IMU data in a supervised way as well.

Fig. 6 introduces the structure of the model in the proposed
platform. The data processing and segmentation steps gener-
ated training data for the input IMU data. In the pre-training
stage, the augmented virtual IMU data is utilized to train
the feature extraction layers, including three convolutional
layers plus pooling layers and output with a flattened layer.
It aims to ensure a feature extraction ability for input signals.
Then, to bridge the gap between the virtual and real domains,
three dense layers are re-trained by a few-shot real IMU
data samples collected from the individuals conducting the
classified motions. This step would adjust the dense layers to
make the whole CNN model transfer more suitable for real
IMU data recognition.

E. Functions and Interfaces

The platform integrated the representative sensor data pro-
cessing functions in a typical sensor-based machine learning
system-building process, including data annotation, segmenta-
tion, and dataset split for testing. Therefore, several functions
and sub-interfaces were created in the platform.

1) Motion Files Import and Configuration: In the begin-
ning, the platform supports reading uploaded motion sequence
files with user-designated names. Then, the platform enters
into the data configuration step. It could set the virtual
IMU data sampling frequency. The user also determines the
numbers and locations of the virtual IMU used (Fig. 7). The
platform identifies multiple optional wearing locations based
on the hierarchical structure of the 3-D avatar, including the
head, neck, right upper arm, right wrist, left upper arm,
left wrist, waist, right upper leg, right lower leg, left upper
leg, left lower leg, right foot, and left foot. The tentative
wearing positions are able to be connected to various daily
electronics such as smart glass/earphone in the head and
intelligent knee-pad in the lower leg. The motion files from
the motion modification-based data augmentation method are

Fie Data Data Data Feature Sampie Model

Import Samping Annotation Segmentation Extraction Segmentation Pretraining fine-tune
Object select

Knee_Kick hips_IN (/) objecto Active

Knee_Ki hips_IJNT Object1 Active

Knee_Kick hips_JN [ Object2 Active

Set
Data sampling
Start sampling Stop sampling
Fig. 7. Interfaces for 3-D avatar motion import and data generation

configuration. (a) Three-dimensional avatars. (b) Configuration of sensor
locations.

simultaneously imported into the platform to produce the
virtual IMU data as well.

2) Virtual IMU Processing: After the virtual IMU data
is generated, the platform allows the user to perform the
annotation and segmentation. Fig. 8 presents the correspond-
ing sub-interfaces for data labeling and splitting. The user
could indicate the arbitrary length of data frames. Unlike the
vision-based data sample, IMU data is abstract and meaning-
less. So, the platform also provides a visualization tool to assist
the user in observing the segmented data frame by each axis
and determining if it is necessary to adjust the length.

3) Model Structure Configuration: The CNN model con-
figuration is also embedded into the platform to enable the
user to flexibly design the required model structure, including
the training epochs, optimizer, learning rate, and loss function.
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data. (a) CNN model configuration. (b) Model fine-tune and deployment.

In addition, the user is allowed to configure the structure as
well. For example, determining how many convolutional layers
and dense layers are used and designing the parameters of each
layer. The related sub-interfaces are shown in Fig. 9.

4) Testing and Fine-Tuning: After the model configuration,
the platform could split the virtual IMU dataset for the model’s
performance test at first. It will provide feedback on the
preliminary evaluation results to help the user modify the
related system setting accordingly. Due to the requirement of
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Fig. 10. Adopted exercise motions in the experiment with their original

videos and converted 3-D motions.

domain transfer, Fig. 9 also presents the model’s fine-tuning
process.

The platform supports the link to the Arduino board to col-
lect the real IMU data and automatically fine-tune the model.
Subsequently, the model is converted to the TensorFlowLite
Micro model and can be loaded directly into an Arduino or
Android device for applications.

1V. EVALUATION

In this section, the evaluation have been conducted to
validate the effectiveness of the proposed virtual IMU-based
HAR system development platform. The first experiment was
performed to evaluate the quality of the generated virtual IMU
data. Another two main sub-experiments were involved in
testing not only the effect of the proposed virtual IMU data
augmentation method but also the case studies for different
application scenarios with the proposed platform.

A. Dataset Collection

Since the platform is dedicated to supporting the virtual
IMU data generation for the wearable HAR system develop-
ment, there are few datasets for this purpose validation because
the mainstream datasets only involve real IMU data. Thus,
we established the IMU dataset for the proposed platform
evaluation. In order to get close to the practical usage scenarios
of the platform, we focused on a typical application, namely
exercise tracking, which is commonly used in rehabilitation,
daily sports, and gym. Exercise tracking normally requires
a certain extent of customization since each user may have
different motion habits and training targets. We selected five
types of exercise motions. We downloaded the exercise video
from YouTube and converted the exercise motion into a motion
sequence file via an online tool (i.e., DeepMotion [45]). The
involved motions are shown in Fig. 10. Each motion sequence
was 25 s in length.

The 3-D avatar’s motion is utilized to produce the vir-
tual IMU dataset and train the CNN model. To validate
the performance of the model, seven people (2 female and
5 female; average age 24.7) were recruited to generate the
corresponding real IMU data. Five real IMU sensors (Xsens
Dot [46]) were placed on the lower body locations of each
individual, including the right upper leg, right lower leg, left
upper leg, left lower leg, and pelvis. The sampling rate for
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TABLE I

IMU Signal Type Ankle Tap High Knee Knee Kick Reverse Lunge Side to Side
x 17411 £92.08 154.62 £ 81.46  120.01 £ 101.18  76.48 £ 43.81 153.23 4+ 41.36

Virtual IMU vs. Real IMU y 10646 + 50.60  81.78 £ 40.57 64.63 + 28.05 60.67 + 32.48 95.77 + 46.99
z 109.02 £ 45.14 110.72 £+ 36.23 101.11 £ 83.94 63.42 £ 51.46 69.06 + 35.46

x  185.12 £ 4755 152.61 £ 50.25  214.17 + 75.97 73.49 + 11.39 96.92 £+ 10.36

Real IMU vs. Real IMU y 103.08 £ 1888 7543 £+ 16.83 65.56 + 13.92 66.62 + 23.58 95.21 + 16.81
z  104.79 £ 1537 84.75 £+ 8.29 144.87 + 55.12 87.55 + 30.27 64.47 + 15.40

real IMU sensors was 20 Hz, which is the same as that of
virtual IMU data. Each person has watched the motion exercise
video to understand the body movement. Each motion was
recorded in 90 s. Considering the practical usage, only one
IMU sensor placed on the right upper leg was employed during
the evaluation in this article.

B. Experiment 1: Evaluation of IMU Signals From 3-D
Avatar Motion and Real Human Motion

Since virtual IMU data trains the machine learning model
proposed by the platform to recognize the real IMU data
eventually, we first evaluated the distribution of virtual IMU
and real IMU data. To compare the two types of signals,
we considered the dynamic time warping (DTW) distance as
the metric, which is able to measure the similarity between two
signals in the time domain [47], [48]. We used the augmented
virtual IMU data from the proposed method to calculate the
relative DTW distance with the real IMU data from each
individual. For the baseline, we also tested the DTW distance
between each individual’s real IMU data as the baseline to
gain insight into differences between the virtual IMU and real
IMU datasets.

Table 1 gives the results of a comparison between the
virtual and real IMU data. Before calculating metrics, we re-
sampled the virtual and real IMU data to enable the time
series are of the same length and obtain the results from
each axis. From the results, the virtual IMU data did not
present major differences in distribution compared with real
IMU data, and different motions may lead to various results
with different axes. Though the difference between the virtual
IMU and real IMU is not significant compared with real
IMU data, it is clear that the virtual IMU data have a more
diverse signal distribution as the standard deviation of the
virtual IMU data is bigger compared to that of the real IMU
data. Since the machine learning model does not have prior
knowledge of the real IMU data distribution during the pre-
training period, expanding the distribution of the training
data of the virtual IMU data is necessary. From Table I,
we confirm that the similarity between virtual IMU and real
IMU signals is acceptable and feasible for the pipeline of the
proposed platform, which is also proved in the previous works
[18], [19].

C. Experiment 2: Motion Modification-Based Virtual IMU
Data Augmentation

The proposed virtual IMU data augmentation method
reduces the requirement for the number of input avatar motion

sequences, which can further contribute to the development of
end-to-end user-oriented customized HAR systems. Therefore,
we evaluated the effectiveness of the proposed virtual IMU
data augmentation method on recognition model training.
We tested the performance of the augmentation method com-
pared with baseline methods, i.e., only employing the original
virtual IMU for training. The experiment tested three, four, and
five classified motion exercises, respectively. Three different
machine learning models were also involved, including the
RF with handcrafted features [49], the CNN model without the
fine-tuning process, and the proposed model training approach
in Section III-D. After the virtual IMU data augmentation,
each motion’s virtual data length was expanded from 25 s
into 25 s x 4 factors x 8 filters = 800 s. Each individual’s
real data was split into four folds. The classifiers are trained
using virtual IMU data and tested on real IMU data for RF and
CNN models. The CNN with fine-tuning is performed using
a few-shot real IMU data (1 fold/22.5 s) on fine-tuning and
tested with the remaining real data (3 folds), which ensures
no tested data leakage in the training phase.

The evaluation metrics of the classifier’s accuracy, sensi-
tivity, and specificity were calculated, which were common
machine learning system evaluation metrics [27], [34]. The
test repeated independent model training three times, and the
results were averaged from the test [35].

Fig. 11 presented the results of data augmentation on virtual
IMU data. For various numbers of motion categories, the
hand-crafted features-based classifier (i.e., RF) did not show
a good performance on recognizing the real IMU data with
or without the data augmentation method. This is because the
manually designed features usually presented limited repre-
sentation ability on low-dimensional time series (e.g., IMU
signal) and difficulty in realizing the transferring capability
from the virtual domain to the real-world domain. For the CNN
model, the proposed data augmentation is able to improve
the performance when training with virtual IMU data and
testing with real IMU data. Since the augmentation expands
the richness of training data distribution, the CNN model could
reach a higher accuracy when recognizing the real IMU data.
Nevertheless, the fine-tuning strategy is capable of greatly
improving the recognition performance of the virtual IMU
data-trained CNN model. Compared with using the initial
virtual IMU for training, the proposed data augmentation
method could enhance the accuracy from 56.8% to 82.6% for
three types of motions (c.f., the result of CNN with fine-tune
in Fig. 11). With the recognized motion types increased, there
is a corresponding decrease in the recognition performance of
the model, e.g., 77.2% for four types of motion and 76.0% for
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Results of the effect of the proposed motion modification-based virtual IMU data augmentation method. The three recognized motions are Ankle

Tap, High Knee, and Knee Kick. The four recognized motions are Ankle Tap, High Knee, Knee Kick, and Reverse Lunge.

five types. Therefore, it could prove the effectiveness of the
proposed data augmentation in improving the performance of
the virtual IMU data-trained CNN model.

D. Experiment 3: Case Study of Employing the Proposed
Platform to Design a Customized HAR System

1) Personalized HAR System Development by Individuals:
In the first case study, we assumed the scenario where the
users developed the customized HAR for personal usage.
The user could follow the virtual IMU-based HAR system’s
development of a pipeline from avatar motion sequence file
import. Then, the platform will generate the dataset for the
model training and collect a few shots of personal real IMU
data to fine-tune the recognition model.

To validate this case, we evaluated using the individual’s real
data to fine-tune the pre-trained model and tested the model
on the same user. Various amounts of individual’s real IMU
data used for fine-tuning were tested. A total of seven users’
data were involved, and the result was calculated by averaging
all the users’ results. Also, we set the baseline method as the
conventional HAR system building approach, which utilized
the same size of real data to develop the machine learning
system and test the remaining data from the same user.

Fig. 12 shows the result of the experiment. The effect
of different amounts of real IMU fine-tuning data from
individuals on the model performance was tested for differ-
ent numbers of motion categories. From the figure, as the
amount of real IMU data used increases, the recognition
accuracy is raised. Compared with training the model with
real IMU data in the traditional way, the proposed customized
HAR system-building approach could outperform the common
approach where real data trains the model. In this method, the
user is asked to provide a portion of the data for fine-tuning.
According to the experiment’s results, the user only needs to
provide a small amount (20-30 s) of real IMU data to realize
the recognition of the corresponding real motions (over 80%)
in three types of motion recognition. The greater the number
of recognized motions, the more real data from the user will
be needed for fine-tuning to achieve better accuracy.

Table II presents the sensitivity and specificity of the trained
classifier. Overall, all the results from the proposed method
outperform the baseline method. As the number of recog-
nized activities increased, the various performance metrics

TABLE 1T
RESULTS OF ACCURACY, SENSITIVITY, AND SPECIFICITY IN
PERSONALIZED HAR SYSTEM DEVELOPED BY INDIVIDUALS
Class Number  Method Accuracy  Sensitivity  Specificity
Proposed 80.3% 73.1% 84.7%
3-Class +13.9% +8.8% +5.6%
Baseline 58.5% 50.7% 70.4%
+8.9% +16.2% +10.7%
Proposed 73.5% 61.2% 82.9%
4-Class +14.4% +12.4% +7.2%
Baseline 44.6% 46.9% 74.4%
+10.9% +9.3% +6.2%
Proposed 66.9% 66.7% 89.4%
5-Class +10.0% +10.5% +4.8%
Baseline 44.5% 44.5% 78.3%
+11.1% +12.6% +7.5%

decreased. Significantly, the sensitivity is slightly lower than
the specificity in different numbers of activity recognition
tests. The sensitivity provides a true positive rate metric and
is also recognized as the recall. And the specificity is related
to the performance of true negative prediction. Thus, it is
notable that the machine learning model trained by virtual
IMU data performs better on negative class prediction. This
also revealed that there is still a certain extent of difference
in the distribution of virtual and real IMU data distribution,
while the inner difference of various activities” IMU data has
a better performance in predicting the negative classes.

2) General HAR System Building: Case A presents the
situation in which the individual used the personal data to
fine-tune and develop the wearable HAR system for the
individual self. In addition, we also tested using the partial
real IMU dataset with all individuals to fine-tune the pre-
trained model. This case simulated the scenario in the HAR,
which was applied to a group of users and focused on the
model’s generalizability. Thus, the leave-one-subject-out eval-
uation was adopted, and the model’s performance was tested
under the different numbers of recognition activity categories
as well.

Fig. 13 presented the general HAR system building result
via the virtual IMU data training and real data for fine-tuning.
Overall, using the virtual IMU data for pre-training and real
IMU data for fine-tuning shows prior performance compared
to using only the real IMU dataset for classifier building.
For five types of motions, the proposed method could reach
90.6% accuracy, and the related baseline method is about
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Fig. 13. Results of testing the generalizability of the model.

TABLE III

RESULTS OF ACCURACY, SENSITIVITY, AND SPECIFICITY IN
GENERAL HAR SYSTEM BUILDING

Class Numebr Method Accuracy  Sensitivity  Specificity

Proposed 95.2% 99.8% 99.9 %

3-Class +7.6% +0.4% +5.6%
Baseline 89.6% 87.3% 93.2%

+4.1% +7.1% +4.3%

Proposed 89.3% 93.4% 97.5%

4-Class +14.4% +9.7% +3.9%
Baseline 84.3% 86.6% 94.9%

+10.9% +6.7% +2.8%

Proposed 90.6% 92.6% 97.9%

5-Class +10.9% +9.3% +2.7%
Baseline 80.9% 84.1% 95.7%

+4.4% +3.6% +1.1%

80.9%. For fewer recognized motions (e.g., three types), the
proposed method is able to achieve 95.2%, while the baseline
is 89.6%. In other words, the proposed method utilizes more

training data than the traditional method of only utilizing real
IMU data. Moreover, the additional IMU data involved was
generated from the original 3-D motion sequence with a 25-s
length, demonstrating the characteristic of low computational
resources.

Table III shows the evaluation results. From the results,
it can be seen that the classifier achieves better classification
and is stronger than the baseline method, regardless of the task
of recognizing several types of actions. All the methods used
in the platform achieve good recognition ability with a higher
accuracy than 90%. Both sensitivity and specificity maintain
good performance. This also confirms that the use of virtual
IMU data can effectively augment the training data distribution
in the general wearable HAR system building. The trained
classifiers have better generalization performance compared
to using only real IMU data.

V. DISCUSSION

To facilitate a more convenient and efficient HAR system
development paradigm, this article presents a platform for
virtual IMU data-based HAR system building. The presented
platform is open sourced in GitHub.! We introduced an end-
to-end engineering pipeline to utilize the virtual IMU data for
the wearable HAR system building, and it offers an alternative
engineering approach to designing a prototype of HAR. The
developer is capable of uploading the 3-D avatar motion
sequence files, providing the personal few-shot real IMU data
to obtain an employable machine learning model for practical
deployment.

IGitHub Link: https:/github.com/kannong/vIMU-HAR/tree/master

Authorized licensed use limited to: Keio University. Downloaded on August 07,2025 at 06:02:10 UTC from IEEE Xplore. Restrictions apply.



XIA et al.: OPEN-SOURCE VIRTUAL IMU SENSOR PLATFORM

A. Virtual IMU Simulation Environment

In a physical environment, the accelerometer in a real IMU
sensor utilizes MEMS technology to fabricate a tiny mass
connected to a reference system by a spring, which is able
to perceive the acceleration. In this article, we introduced the
virtual IMU generation from the [36], and the whole simula-
tion process did not follow the principle of a real IMU sensor’s
mechanism. The main simulation of the virtual IMU data is
derived from a kinematic perspective based on the second
displacement differential. This is because we are prone to gain
the motion skeleton series from the 3-D avatar. Calculating
the second differential of avatar joint displacement is much
more intuitive and operable than simulating the mass-spring
structure of a real accelerometer in an IMU sensor. It would
decrease the requirement of the simulation environment in
terms of physical principles, calculation resources, and so
on. Thus, unlike other professional modeling or simulation
software, e.g., MATLAB, Ansys, and others, our platform
supports the normal virtual environment, such as Unity3D,
to allow a more general interactive scenario, including the
VR/AR applications. It emphasizes the iterative ability and
low-threshold requirement of users.

B. Virtual IMU Signal Quality

Considering the difference between the virtual and real IMU
data, the real IMU sensor usually generates a corresponding
high-frequency noise during the measurement process due to
the influence of the sensor structure and the transmission
process. Notably, some high-frequency noise from the real
IMU data and transmission loss is difficult to simulate with
this approach. Therefore, considering the practical usage, the
noise signal could be filtered, and this fine-grained simulation
is not necessary for data-driven application scenarios such
as those of the wearable HAR system. Moreover, since the
virtual IMU data is derived from the 3-D motion in real-time,
the hardware requirement to ensure a smooth and stable 3-D
motion execution environment is significant, e.g., a relatively
higher frame rate.

Additionally, the current works related to the virtual IMU
follow the kinematic calculation approach to derive the virtual
IMU data. Nevertheless, the data augmentation of virtual IMU
data can also improve the quality of the virtual IMU dataset.
For example, Xia and Sugiura [18] proposed a spring model
structure in Unity3D to enhance the size of the virtual IMU
dataset. Though the nonlinear principle of the spring model
could increase the data distribution of virtual IMU, it still
lacks an explanation, which makes it hard to control the
related parameters. Thus, improving the quality of virtual
IMU through the augmentation or modeling method, e.g.,
multidomain modeling, is still a promising solution to raise
the fidelity of virtual IMU data.

On the other hand, the mathematical kinematics calculation
approach to obtain the virtual IMU data may greatly depend
on the avatar’s motion input, which requires a reliable and
stable 3-D motion as the premise as well as the IMU’s wearing
orientation. Since the virtual IMU data is used to train the
HAR model, it is necessary to ensure a higher similarity

9508514

between the training data and the ultimate recognized data
distribution. So far, the platform has adopted transfer learning
to bridge the gap between the virtual and real IMU data distri-
bution. In addition, since there is no relevant data distribution
knowledge for reading IMU during the pre-training process,
it is significant to consider more virtual IMU data distribution.
This is why there is a need to incorporate virtual IMU
data augmentation methods in the platform. Considering the
enrichment of virtual IMUs for data enrichment and increasing
the degree of similarity between virtual IMU and real IMU
data are key to enhancing the generalization capabilities of
the model.

C. Deviation Between Virtual Avatar Motion and Real
Motion

Our platform adopts the 3-D avatar’s motion as the input
reference to the real human motion from an RGB video con-
version online tool [45]. However, there is always an inherent
difference between the avatar’s motion and real human motion.
The conversion process follows an inference approach that
employs a data-driven machine learning model to derive the
3-D skeleton information of the person in the video. Thus, the
quality of the video would affect the completeness of avatar
motion, such as the occlusion, lighting, background color, and
so on [50]. However, the related evaluation of the conversion
model from RGB video to 3-D avatar motion has been assessed
in various ways to demonstrate its stability [S1], [52].

However, the platform contributes by proposing an end-
to-end pipeline from 3-D avatar motion to wearable HAR
system building. Therefore, in this article, we did not evaluate
how different the 3-D avatar motion is from the real motion.
Because our goal is to utilize the 3-D avatar motion for
generating the related virtual IMU data, and the motion’s
difference would result in the IMU signal’s difference, we con-
ducted the corresponding experiment to provide the result of
signal-level evaluation to show the reliability of the proposed
method. In addition, the approaches generating the 3-D avatar
motions are diverse, including MoCap equipment, manual
design, video conversion, and others. We deployed one of the
common and accessible approaches, i.e., using the RGB video
conversion. It is foreseeable that as the stability of the video
conversion model improves, the quality of the resulting virtual
IMU will inevitably become higher and higher.

D. Compared With Existing HAR System Development
Platforms

Table IV presents the comparison of the proposed platform
with previous toolkits/platforms for wearable HAR system
development. Overall, all platforms basically concentrated on
the machine learning route and supported the fundamen-
tal steps of system building, i.e., the signal collection and
annotation, as well as the model training and testing. These
platforms build interfaces to facilitate data collection via
various communication protocols and support the visualization
of data processing. In addition, the model training function
helps the developer understand the model’s performance and
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TABLE IV
COMPARISON OF OUR PLATFORM WITH PREVIOUS TOOLKIT/PLATFORM WEARABLE HAR SYSTEM DEVELOPMENT
o, Human Sensor Model
. Develop . Training Data o
Work  Device . Application Resources Number . . Training/
Environment Dataset . . Collection/ Annotation .
Cost and Location Setting Testing
General HAR
[17] IMU Matlab system Real High v v
development
Support user
experiment .
[38] IMU HTML with COTS Real High v v
wearables
Interface
[39] EMG Python prototyping Real High
and experiment
MU . .
[54] Camera / Gesture design Real High
General HAR
[55] MU JavaScript system Real High
development
IMU Gesture
[56] / recognition Real High v v
amera
system
HAR
Our Unity Game . .
work IMU Engine prototyping Virtual Low v v v

and experiment

adjust the related configuration to realize an optimal recogni-
tion system. These two main steps remain in our platform
as well. Basically, the evaluation result is similar to that
of other experiments in HAR platform work. For example,
Haladjian [17] recruited seven individuals contributing to the
IMU dataset with eight classes of activity, and their platform
built the wearable HAR system with 81.8% of accuracy.

From the comparison, our platform maintains the advan-
tages in sensor number and location selection and has few
real individuals participating in dataset collection to keep
low human resources costs. First, the primary data generation
process is performed by the 3-D avatar motion in the platform
rather than the traditional real human. The training dataset
is related to the virtual data, and thus, the requirement of
participants to contribute to the training dataset is low. This
would lead to a low-cost, high-efficiency solution, since there
is no need to recruit the people and request them to repeat
the recognized motion many times to generate the training
dataset as the traditional way. Second, the platform gives more
flexibility for the developer to indicate the sensor number and
locations on the body to obtain the related IMU dataset. This
is difficult to achieve on other HAR system platforms based on
real IMU. This is because other platforms are based on a pre-
collected dataset, which provides optional sensor locations and
quantities. Once developers have new requirements, they need
to collect datasets again. We converted the dataset collection
from the real world into the virtual environment. Developers’
new requirements can be met quickly, and the required sensor
locations and quantities can be selected intuitively. Overall,
with the proposed platform, the whole development process
could be completed in the virtual engine. Only a few shots of
real IMU data are required to complete the domain transfer
and ensure a good recognition ability for the developed model.
Therefore, the corresponding low-cost, high-efficiency, and
flexible characteristics are the main merits of our wearable
HAR system development platform.

VI. LIMITATION AND FUTURE WORK
A. Virtual IMU-Oriented Data Augmentation Method

The  proposed  platform  introduces a  motion
modification-based virtual IMU data augmentation method.
It aims to address the issue of larger resource requirements
for 3-D motion sequences and lower the threshold of
imported 3-D motion length. The evaluation demonstrated the
performance of the proposed virtual IMU data augmentation
approach. Using this method, the initial virtual IMU dataset
size can be expanded, which will help improve the classifier’s
performance. However, there is still a lack of suitable public
3-D motion datasets with the corresponding real IMU data in
the community. The most relevant dataset, such as AMASS,
has many 3-D motions but still misses the real IMU data,
which is difficult to employ to evaluate the platform’s
performance [53]. Thus, in this article, we only adopted a few
motion exercises as the target recognized motions, and each
motion’s length is relatively short. Nevertheless, the involved
motions have validated the developed platform’s potential
and effectiveness to a certain extent. In the future, building a
suitable public 3-D motion with the corresponding real IMU
data could benefit the investigation of data augmentation
methods and classification algorithms.

B. Transfer Learning Approach for Virtual IMU-Based HAR
System

Additionally, one of the most important challenges employ-
ing the classifier trained by virtual IMU data is facing the
domain adaption problem, namely recognizing the real IMU
data. In this article, we adopted few-shot real IMU data
to fine-tune the dense layers of the CNN model to per-
form the knowledge transfer. Focusing on the cross-domain
classifier establishment approach remains an issue of con-
cern [20]. Since during the pre-training process, there is
no prior knowledge in terms of real IMU data distribution,
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it is difficult to apply the manual information to compensate
the gap between the virtual and real IMU data distribution.
Thus, the platform asks users to provide certain real data,
and adopt a more practical approach to conduct the transfer
learning. The convolutional layer is frozen to ensure the
feature extraction capability, and fewer real data are utilized
to retrain the fully-connected layer to accomplish domain
adaption. Other approaches, such as using mutual information,
incremental learning, and knowledge distillation, although they
can improve the generalization ability of the model, still
lack the practicality characteristic. Therefore, continuing to
explore more practical and high-performance transfer learning
approaches to realize the transfer from virtual to real domains
is the next step that still needs to be focused on.

So far, the experiment was conducted with limited recog-
nized activity categories and participant numbers. This is due
to the performance of the recognition model trained by virtual
IMU data. As introduced, the difference between the virtual
and real IMU data distribution results in a limited generaliz-
ability capability of the recognition model. However, since the
platform has the advantage of decreasing the requirement of
a real IMU dataset, it is suitable for application for a small
population (e.g., a family), which only needs a little demand
for model generalizability performance. The highly effective
and flexible characteristics enable the development to be much
easier. It is not only under virtual IMU data-trained models
that such migration needs to be addressed. Other work, such
as speech recognition [31] capacitive sensing [33], also meets
challenges when migrating pre-trained models to individual
users with personalized models. Investigating the method to
realize a fast and high-performance transfer learning approach
would also be the next focus of the research.

VII. CONCLUSION

This article introduced an open-source platform based on
the 3-D avatar and virtual IMU data to build a customized
wearable HAR system. Traditional HAR system develop-
ment follows the typical sensor-based machine learning chain
and maintains tedious and costly trial-and-error steps, espe-
cially the dataset collection. Therefore, we integrated the
cross-modal virtual IMU data generation with the developed
motion modification-based data augmentation and training
method to be able to build the customized wearable HAR
system. The advantage lies in the ability to flexibly select
different wearing positions and numbers and generate relevant
synthetic training datasets. The domain adaptation approach
can also be utilized to further reduce the need for real data,
improving the efficiency and cost of system development.
Based on the experiment, the platform supports different
application scenarios, and the user can establish and prototype
the wearable HAR system faster, cheaply, and more efficiently.
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