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Fig. 1. By installing ToF sensors near the nozzle of the humidifier, it can be transformed into a device capable
of detecting airflow within a certain space. The mist will capture the disturbances generated by motions and
reflect them in the ToF readings through changes in light scattering. This system can detect various types of
motions, including (b) blowing, (c) gestures, (d) interactions with objects, and (e) exercises.

Human activities can introduce variations in various environmental cues, such as light and sound, which can
serve as inputs for interfaces. However, one often overlooked aspect is the airflow variation caused by these
activities, which presents challenges in detection and utilization due to its intangible nature. In this paper, we
have unveiled an approach using mist to capture invisible airflow variations, rendering them detectable by
Time-of-Flight (ToF) sensors. We investigate the capability of this sensing technique under different types of
mist or smoke, as well as the impact of airflow speed. To illustrate the feasibility of this concept, we created a
prototype using a humidifier and demonstrated its capability to recognize motions. On this basis, we introduce
potential applications, discuss inherent limitations, and provide design lessons grounded in mist-based airflow
sensing.
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1 INTRODUCTION
When designing interactive devices or sensing technologies, researchers often draw inspiration
from human interaction with the surrounding objects. Previous efforts have been made using
various sensors and modalities to enable motion recognition and thus create innovative interaction
paradigms [23, 51, 52]. In addition to these commonly exploited physical properties, airflow, which
is pervasive in our surroundings, holds significant potential for interactive applications. Airflow is
a perceivable and dynamic medium that humans can perceive, enabling its use as a conveyor of
information and thus a tactile display [25]. At the same time, it can be generated through motions
such as blowing, breathing, and mid-air gestures, sending information about the intensity and
direction of these motions. Furthermore, many daily motions, such as opening a door, closing
a book, or standing up from a chair, could naturally affect the surrounding airflow, presenting
an opportunity for utilizing airflow as an input for implicit interaction. Therefore, capturing and
leveraging airflow properties opens up new possibilities for the interaction between humans and
devices.

However, detecting airflow, an intangible and invisible entity, presents certain challenges. Con-
ventional approaches like anemometers (instruments measuring the airflow speed), mass flow
sensors, or pressure sensors are commonly employed in integrated systems and specialized do-
mains. These techniques rely on the principle that the airflow generates pressure on object surfaces.
Although effective, these methods often prove less accessible for interaction purposes. Neverthe-
less, alternative solutions have emerged to address this limitation by indirect measurements[43].
One promising approach involves exploiting wind noise, which produces a distinct broadband
frequency response that exhibits particularly high amplitudes for low-frequency components when
captured by a microphone. Leveraging this characteristic, researchers have developed remarkable
and cost-effective blowable interfaces [7, 8, 30, 31]. However, microphone-based airflow detection
methods often focus on blowing motions. This is because blowing can generate the most noticeable
wind noise with relatively high-speed airflow. In contrast, detecting other motions that generate
weaker airflow, such as waving or exercising, which do not produce sufficient sound or fast airflow,
can be challenging with microphones. It either becomes difficult to detect or requires additional
consideration for background noise separation.

Our key observation is that the mist exhibits variations in shape and volume as it drifts through
the air, influenced by wind or airflow. Due to the composition of numerous tiny particles, the
mist has the unique potential and possibility to capture finer and more subtle changes in airflow.
This distinctive characteristic makes it stand out in sensing applications. From an interactive
perspective, the mist can provide natural visual feedback during interactions. It enables us to see
airflow variations that often go unnoticed in daily life but can be utilized as a means of sensing.
Previous studies have primarily focused on using the light scattering and obstruction or reflection
characteristics of the mist to create mid-air displays [22, 26, 46]. However, utilizing mist as an
input bridges the gap between intangible air disturbances and motion recognition. Traditional
anemometers are primarily designed for meteorological or industrial purposes and are not easily
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integrated into interactive systems that rely onmotion recognition as theirmain objective. Acquiring
information about airflow could significantly expand the possibilities in interactive design.

Based on these principles, we present a novel method for measuring airflow by employing mist
as the medium and recognizing the motions. Our proof-of-concept prototype consists of Time-of-
Flight (ToF) sensors composed of an infrared (IR) diode, a phototransistor, and a mist-generating
device, such as a humidifier. The ToF sensors are positioned near the humidifier nozzle in an upward
orientation to detect the emitted mist. In an idle state, the particles in the mist obstruct the IR light
and reflect the part of the light, and thus the sensor can detect it. However, when the surrounding
airflow disperses the mist, the sensor’s measurements fluctuate depending on the intensity of the
airflow. Thus, according to sensing the airflow with the mist, we could be able to recognize the
corresponding motions that cause airflow with various intensities. Since we can use the common
mist generator (e.g., humidifier), this device can be ubiquitously placed in various indoor locations.
Users can easily replicate and modify the proposed sensing technique and apply it in their desired
scenarios. For example, when placed on a desktop, it can be used to recognize gestures or breath
input for controlling other electronic devices. During physical activities, it can count the number
of squats or spot jumps the user performs. When positioned in an entryway, it can detect door
openings or the presence of individuals passing by.

In this paper, we investigated and developed a mist-based interface for sensing human motions.
An interface consists of three ToF sensors and achieves a small, lightweight design that can
effectively applied to various types of daily mist-generating devices, such as humidifiers. The
system could sense human behavior more implicitly, which provides great potential in the natural
interaction paradigm. The contributions of this paper are:

• The ToF sensor-based mist sensing capability was tested under different mist types and
situations.

• A proof-of-concept design for mist-based interface sensing the human motions and the
corresponding evaluations.

• Design lessons summarized for mist-based interface design and example applications pre-
sented.

2 RELATEDWORK
2.1 Mist for Interfaces
Mist can be characterized by its formless nature and consists of numerous particles. It could obstruct
and scatter the light in the surroundings and allow mid-air display to become possible [33, 34]. Fog
[26], water drops [2], and airborne particles [36] have been used to scatter the light. Previous efforts
focus on obtaining a better display experience. Tokuda et al. [46] designed MistForm, a shape-
changing mist display that accommodates multiple viewers. They solved challenges such as image
distortion and uneven brightness on dynamically curved surfaces through machine learning-based
screen characterization.

There are also attempts to create novel interaction methods based on the mist display. Plasencia
et al. [26] proposed an interaction paradigm between a traditional tabletop surface and a see-
through and reach-through mist display. They utilized a perspective technique to merge the two
displays seamlessly, establishing a cohesive and immersive 3D interactive space. In addition to
enabling reach-through interactions, researchers are actively exploring methods to enhance the
reconfigurable capabilities of mist screens and integrate them into the interactive experience.
Currently, there exist various approaches to manipulate the form and shape of mist in the air,

offering newways for visualization design. For example, movable nozzles [22], mechanical actuators
[46] or aerosol [45]. Norasikin et al. [29] suggested a cost-effective and off-the-shelf solution for
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creating reconfigurable mid-air displays using Bessel beams. Airflow was taken as a medium for
transmitting sound waves, and Bessel beam generators were positioned around the nozzle. This
approach gave examples of aligning the projected content with the shape of the mist, thereby
introducing novel possibilities for interactive visualizations.

When examining the modules for detecting human activities in mist displays above, it becomes
evident that camera-based motion capture devices like Kinect or OptiTrack were predominantly
employed. Previous research has predominantly focused on employing mist as a medium for
projection or holography. In this paper, we innovatively regarded the variation in mist as an input
form. It might expand the design space for mist-based interaction if the sensing techniques based
on the intrinsic properties of the mist itself could be applied.

2.2 Sensing the Human Motion Indirectly
Human motion recognition has been successfully achieved by directly using the human body as the
detection object. The mainstream sensing methods include wearable IMU [19, 47], EMG [10, 18],
or non-wearable vision sensors [20, 49], Radar sensors [1, 12] and so on. This explicit sensing
method has been further explored for its algorithm and performance since it directly captures
the motion-related signals of the human body. However, another type of detection using implicit
sensing is emerging as well. This type of detection does not directly sense the human but acts on
the changes in other physical variables caused by the human motions, thus inferring the motions
performed.
This indirect sensing method provides more opportunities to combine the recognition system

with daily items, thus forming a more natural and ubiquitous interface. To capture the user’s
behavior with a home-based item, Sugiura et al. [44] embedded the photoreflective distance sensor
module into a soft item and detect the distance variation between the sensor module and item
surface, which user’s behavior can cause. It therefore created a soft item-based interface to sense
the user’s behavior interacting with the cushion, toy, and other elastic objects. Similarly, Sugiura et
al. [43] also deployed the photoreflective sensor to detect the stretching state of the elastic textile
because it would have different light transmission properties in different stretching states. It can be
used to measure the tangential force applied by users as a stretchable interface. For sensing the user’s
force, Pei et al. [32] introduced a non-contact method named Forcesight, using laser speckle imaging.
Their key observation is that the presence of force induces deformations on object surfaces. Despite
being subtle, these deformations result in noticeable and distinguishable shifts in laser speckle
patterns, which could be exploited to detect the applied force. The corresponding idea employing
laser speckle imaging has also been used to detect the user’s behavior with household appliances
[54], human motion [55], ground detection [48] and so on. In addition, detecting the lightness
variation caused by users could also create a ubiquitous interface. Optosense [50] presented a
system that employed the photodiode to build a self-powered interface. It utilizes the ambient light
to power the system itself and is able to sense the energy fluctuations led by lightness variation,
and thus recognize the ambient situation and user’s motion. To employ the ambient energy change
for sensing the human, Sozu [53] introduced a toolkit design that allows the sensing system to be
deployed in various environments capable of generating energy, such as taps, outdoor, heating,
doors, and so on. Through the energy harvesters, it can convert those energies into electricity
and thus sense the user’s motion to make any variation of energies, for example, opening the
tap. Besides the light, the audio is a significant element in sensing human motion. For example,
SAMoSA [27] showed a smartwatch-based low power-consumption motion recognition system. It
senses the sound around the user by sub-sampling to recognize the corresponding motions.
Thus, it is believed that the indirect sensing method for human motion could build a more

pervasive and ubiquitous interface for users [4, 37]. In this paper, we observe that the airflow that
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causes the ubiquitous mist variation can also be employed for a potential indirect human motion
sensing method.

2.3 Airflow Used for Interaction Design
Airflow or wind can be produced through blowing, serving as an input modality, while its tactile
perception by humans enables it to function as an output method [42]. This interplay has built the
basis for using wind as a communication medium and the concept of blowable interfaces [38].

BLUI [31] is a hands-free interactive system that supports blowing at a laptop or computer screen
to directly control applications. This system captures the wind noise with a single microphone
and uses a k-nearest neighbors classifier to distinguish the area where the user is blowing with
specific wind noise. Given the widespread inclusion of microphones in various commercial products,
researchers have investigated the integration of breath input into wearable devices [7, 11, 30]. As a
complement, there is a growing interest in exploring design paradigms for breath-based interaction
[5]. Kusabuka and Indo [21] proposed a system with a breath and IMU sensor on a mask, and
designed a series of breath gestures including swiping, circling, dragging & dropping, and so on.
Blowing interaction is also commonly associated with healthcare or rehabilitation for respiratory-
related diseases. For example, Larson et al. [24] presented a low-cost smartphone application for
home spirometry; Nikkila et al. designed a breath-controlled game to encourage medical adherence
for children with asthma.
The exploration of airflow as a potential medium for haptic feedback and its application as an

augmentation tool for enriching immersive experiences has also garnered more and more research
interest these years. Lee et al. [25] conducted a study on the utilization of airflow as a non-contact
wearable display. Their system incorporated multiple micro-fans positioned near the cheeks, neck,
upper arms, wrists, and ankles. The researchers examined the perception threshold of airflow
intensity and duration for tactile stimulation. Building upon this work, Shim et al. [41] further
advanced the concept. They used wind as an extra feedback modality to address the limited channel
capacity problem resulting from the small contact area when applying a tactile display to the back
of a smartwatch. In the field of virtual reality (VR), airflow is widely acknowledged as a crucial
component in simulating real-world experiences, and numerous studies have been conducted to
optimize its impact on enhancing user immersion [8, 15, 17, 28, 35]. Moreover, the incorporation of
wind-driven wafting odor adds another dimension to the interaction of airflow, particularly in the
context of olfactory display [14]. Existing airflow-based system designs primarily focus on blowing.
However, it is noteworthy to recognize that airflow could be generated in various contexts

beyond blowing and the input method could make more extensive use of the airflow itself. This
paper positions itself as adding a new perspective of input to the design space of the "atmospheric
interfaces" [3].

3 MIST SENSING TECHNIQUE
To create a mist-based interface, our idea is to capture the variations in the mist caused by the
airflow generated by human motion and recognize it. Utilizing the mist variation could have a
wider detection range than normal airflow or wind noise detection, and it also maintains great
interaction and visualization features.
Therefore, we focus on the techniques related to mist sensing. The classical way of detecting

smoke is usually with chemical sensors or photoelectric sensors, which are often used for specific
types of smoke detection, such as nephelometers or aethalometers for safety purposes to detect the
presence of fires, specific chemical leaks, environmental monitoring, and so on [13]. However, for
daily interaction purposes, such expensive devices are not well suited for common mist detection,
such as mist from humidifiers. Since the nature of mist lies in its constituent particles, different
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particles cause the reflection of light. Therefore, we used the ToF sensor to capture the change in
mist. The emitter on the ToF sensor transmits an infrared light, which, upon encountering smoke
particles, undergoes absorption, reflection, or penetration. The reflected light is then received by
the photodetector on the sensor. Thus, in this section, we investigated the capability of mist sensing
with the proposed method, including the sensing capability of different types of common mist, the
influence of airflow direction, and velocity.

Fig. 2. Experiment devices: (a) VL53L1X ToF sensor. (b) WT87A anemometer. (c) LKC-1000S+ 2nd air monitor.
(d) Small fan; Source of smoke/ mist generation: (e) Humidifier. (f) Dry ice. (g) Vaporizer. (h) Incense. (i) Hot
water. (j) Cigarette.

3.1 Apparatus
The equipment used in these studies is illustrated in Figure 2 (a)-(d). We used the VL53L1X ToF
sensor (Strawberry Linux Co., Ltd.), which has a 940 nm wavelength infrared laser to detect
distances ranging from 100 mm to 4000 mm. We employed a sampling frequency of 30 Hz. For
the instrument that measures wind speed, we utilized the WT87A anemometer (manufactured by
Wintact), capable of detecting wind speeds from 0.3 m/s to 30 m/s, with an accuracy range of 5%.
Additionally, we employed an Arduino Uno R3 to record the data and a common small fan as the
source of airflow generation.

3.2 Sensing Common Mist Types
To investigate the impact of different mist types on the light scatter effect for the ToF sensor, we
studied six objects capable of generating mist or smoke (Figure 2 (e)-(j)). As shown in Figure 3 (a),
to clarify the effects of mist, a flat barrier was placed at a distance of 15 cm from the ToF sensor to
compare the effect of mist with normal distance detection. The mist was generated at a distance
of 5 cm from the sensor. In order to ensure the vertical ascent of the smoke, the experiment was
conducted indoors in a controlled environment devoid of airflow.

As shown in Figure 3 (b), the sensor data was applied to Gaussian filtering. Smaller amounts of
mist/smoke, such as hot water, incense, and cigarettes, are influenced by the surrounding airflow
caused by the heat generated during their burn, resulting in greater fluctuations. Other objects
like humidifiers, capable of generating a stable and substantial volume of smoke, exhibit lesser
fluctuations. Additionally, all tested mist types demonstrated the ability to be sensed by the ToF
sensor. As shown in Figure 3 (c), to further investigate the properties of different types of mist,
we used an LKC-1000S+ 2nd air monitor (Elitech Technology, Inc) to measure the particle density.
Based on part of the samples such as Incense, cigarettes, and Vaporizer, it can be observed that
higher particle concentrations result in a higher efficiency of blocking the infrared light.
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Fig. 3. (a) A smoke source is placed along the straight line between the sensor and the barrier. (b) The data
from the sensor when different types of smoke obstruct the IR laser and (c) the number of particles (per/L)
measured by a particle sensor. The colors of the curves correspond to the colors of categories in the bar chart.

3.3 Sensing Airflow Direction

Fig. 4. When two sensors are placed on the sides of the humidifier nozzle, the sensor data and corresponding
schematic diagram when airflow blows from the right side. The colors of the curves correspond to the colors
of the sensors, while the x-axis and y-axis represent the frame number in sequence and sensor readings,
respectively.

We then tested how the sensor data can reflect the direction of airflow. Two ToF sensors with the
light emission source upwards were placed at a horizontal distance of 1cm and closed to the nozzle
on both sides, and an airflow was applied from the right side (Figure 4). Under idle conditions,
the mist generated upward from the nozzle could simultaneously cover the detection range of
both sensors. Once the airflow was blown from the right side, it initially dispersed the mist above
the right sensor, resulting in a peak in the curve represented by the green line. Subsequently, the
mist above the left sensor was dispersed, forming another peak on the blue line. By increasing the
number of sensors near the nozzle, it is possible to detect airflow direction in a 360-degree range.
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3.4 Sensing Airflow Velocity

Fig. 5. (a) The anemometer was positioned in proximity to the mist-covered sensor. Specified wind speed
values were achieved by adjusting the rotational speed of the fan and the distance between the fan and
the anemometer. (b) The distribution of sensor readings across 1,500 frames of data is depicted. Each row
represents the distribution of readings corresponding to airflow velocity and the absence of mist. The color of
each cell reflects the sensor reading.

Different airflow velocities are expected to cause varying dispersion effects on mist. To further
examine this phenomenon, we placed an anemometer close to the sensor and the nozzle to measure
the airflow velocity arriving at the mist’s source (Figure 5 (a)). By adjusting the speed of a fan and
its distance from the anemometer, we generated a continuous horizontal airflow near the nozzle at
a designated velocity. We conducted a total of 11 conditions, including the absence of mist, with
data recorded at intervals of 0.5 m/s ranging from 0 m/s to 4.5 m/s. Once the anemometer readings
stabilized, we initiated the recording of sensor data for a duration of 1,500 frames.

We organized the sensor data into a heat map shown in Figure 5 (b). The color of each grid cell
reflects the magnitude of the sensor data. By analyzing the proportions of different colors within
each row, we can evaluate the impact of continuous airflow onmist dispersion with velocity changes.
Notably, we observed a clear nonlinear relationship between airflow velocity and mist dispersal.
When the airflow velocity is below 1 m/s, an increase in airflow velocity does not effectively disperse
the mist. However, within the range of 1 m/s to 2 m/s, increasing the airflow velocity demonstrates
the most pronounced impact. This also suggests that the sensitivity of sensing mist changes is better
when the airflow speed of the generated airflow is in the interval of 1-2 m/s. During this interval,
users can visibly see changes in the mist pattern. However, in practice, the airflow affecting the
mist is also affected by the distance between the airflow source and the mist source. For example,
an airflow source with a specific speed will have a diminishing effect as it moves away from the
mist. Therefore, in the design, it is necessary to balance the velocity of the generated airflow and
the distance between the airflow source and the mist.

4 SYSTEM DESIGN
4.1 Hardware
Our proof-of-concept prototype consists of a mist generator humidifier, three ToF sensors, and
a bracket (Figure 6). The humidifier is a 3oz Ultrasonic Aroma Diffuser manufactured by MUJI,
which is in a cylindrical shape with a base diameter of 78 mm and a height of 140 mm. The nozzle
is 20 mm in width. The humidifier can spray mist in front of the nozzle with an elevation angle
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Fig. 6. Proof-of-concept prototype.

of 45 degrees. Due to the narrow nozzle, the mist from the humidifier covers a cone shape with a
slender tail. This mist-covered space has a length of approximately 15 cm and a maximum width of
about 10 cm.

In order to maintain an appropriate value on the sensors and quickly reset once the disturbance is
over, we aim for a stable presence of mist in specific regions, which is the area near the nozzle for this
humidifier. If the sensors’ distance from the nozzle is too far, even without apparent disturbances,
the mist itself may dissipate or drift due to gravity. When airflow-carrying mist has a relatively
high velocity, it helps maintain the shape and integrity of the mist. For example, at the nozzle of
a humidifier, we can observe the mist being sprayed out like a ribbon. Background disturbances
caused by factors like air circulation in the environment would have minimal impact on the mist
at this location. Therefore, we positioned one sensor directly beneath the nozzle. As mentioned
in Section 3.3, placing sensors on both sides of the nozzle could detect airflow direction through
the time difference of peaks in sensor readings, we positioned a sensor on each side, closer to the
nozzle. Since the humidifier we used as the prototype sprays mist diagonally upwards, the sensors
on both sides are slightly tilted to ensure they can be covered by the mist in an idle state.
As shown in Figure 6 (b), Middle Sensor is positioned below the nozzle at a distance of 15 mm,

while Left Sensor and Right Sensor are tilted at an angle of approximately 50 degrees and placed at
a horizontal distance of approximately 22 mm from the nozzle. Three VL53L1X ToF sensors are set
to a sampling rate of 40 Hz. The sensors are powered by a 3.3V power supply from an Arduino Uno
R3 and connected via the IC2 interface for data recording.
Due to the narrow shape of the mist at the nozzle, if we want to add more sensors and ensure

their complete coverage by the mist simultaneously, they should be positioned along the direction
where the mist is sprayed. For example, based on the current configuration, we could add more in
the direction where the mist is sprayed. However, as the sensor is positioned away from the nozzle,
the sensors are more susceptible to disturbances and slower resetting. Considering the potential
lack of useful information and features in the data with further increases in sensor quantity and
the risk of model overfitting, we chose to use three sensors to capture the mist variation close to
the source (i.e., nozzle) in this prototype.

4.2 Machine Learning
Considering the complexity of the airflow patterns, the manually selected features would be
challenging and time-consuming. Thus, we employed the ROCKET [9], an exceptionally fast and
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Fig. 7. The input data is applied with random kernels, and then sent to a linear classifier.

accurate time series classification method using random convolutional kernels. For a given input
time series, ROCKET generates a vast number (10,000) of random convolutional kernels at various
positions and with different lengths. Within each kernel, features are extracted and a feature map
is generated. Rather than relying on complex neural networks, simple linear classifiers are utilized
to perform the classification task (illustrated in Figure 7). In this study, the default setting (10,000
kernels, 4 features per kernel) of ROCKET classifier is used.

5 EVALUATION
We evaluated using the designed prototype to validate the performance of mist induced by airflow
as a method for motion recognition. Additionally, we investigated the effects of training dataset
size, the sensor number and placement, and the performance of universality. Additionally, we also
conducted a study to explore the performance of the interface further to recognize the different
motions that cause similar airflow.

5.1 Tested Motions
Referred to the related work [5, 21], we tested several blowing gestures, including Blow, Double
Blow, Long Blow, and extended them by variations from different directions with respect to the
device. Additionally, we explored the use of common interactive objects that can generate airflow,
resulting in two motions of: Flip Book (From Left) and Wave with Paper (In Front with a half-folded
A4 paper). We also chose two indoor fitness exercises: Jumping Jack and Squat, bringing the total
number of motions to 10 (illustrated in Figure 8).

5.2 Dataset Collection
We recruited 12 participants (3 females), all right-handed, with a mean age of 22, from a university.
Participants were compensated with 10$ for their involvement. The device is set on a desk in
front of participants in their reach. After a brief introduction of the device and the experiment’s
purpose, data collection started. The device was placed on a common office desk, with the nozzle
approximately 85 cm above the ground. Participants were invited to sit on a regular chair around
50 cm in height, which was placed in front of the device, and perform the motions in Figure 8 (a)
to (h), followed by participants stood up at the desk and performed motions (i) and (j). The data
collection followed the order of blowing (motion (a) to (f)), interacting with objects (motion (g) and
(h)), and exercises (motion (i) and (j)).

For motions (a) to (f), participants proceeded from left to right, completing all motions in that
direction before transitioning to the next. Participants were not constrained by specific motion
intensity and were instructed to perform the motions naturally and comfortably. For each motion,
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Fig. 8. 10 motions tested: (a) Blow Left. (B) Blow Front. (c) Blow Right. (d) Double Blow Left. (e) Long Blow
Front. (f) Double Blow Right. (g) Flip the Book on the Left. (h) Wave with Paper in Front. (i) Jumping Jack. (j)
Squat. The blue arrows in the figure represent the expected direction of airflow. The green arrows in (g) and
(h) represent the direction of the movement. The white rectangular planes in (i) and (j) represent the desk
where the device is set.

Table 1. Classification accuracy when using different numbers and combinations of sensors.

Middle Left Right Left and
Middle

Right and
Middle

Left and
Right

All Sen-
sors

Accuracy 62.61% 75.50% 71.83% 80.86% 77.56% 86.43% 91.17%
SD 2.12 5.07 6.75 4.64 5.06 3.46 4.22

participants performed the task upon receiving instructions. We recorded ten sets of data with 160
frames. This procedure resulted in 3,600 * 160 time series data (12 participant × 10 motions × 10
rounds × 3 sensors × 160 frames).

5.3 Results
5.3.1 Within-User Result with Different Sensor Numbers. We conducted tests to evaluate the classifi-
cation accuracy of our classifier for 10 different motion recognition. The results of classification with
data from three, two, and single sensors and different combinations respectively are summarized in
Table 1 and shown in Figure 9 (10-fold validation used).

When using data from all three sensors (Figure 9 (a)), the accuracy reached 91.17% (SD=4.22).
When using data from the sensors set on each side of the nozzle (Figure 9 (b)), the accuracy is
86.43% (SD=3.46). The confusion among directions increases when removing the middle sensor.
Classification results from left and middle, right and middle sensors are 80.86% (SD=4.64) and 77.56%
(SD=5.06), respectively. This finding provides evidence to some extent for the significance of a
symmetric sensor configuration. Furthermore, we observed that these results further amplify the
bias and false positive of the model towards directions (Blow Left and Double Blow Right). When
using data from a single middle, left, or right sensor (Figure 9 (e)-(g)), the accuracy dropped to
62.61% (SD=2.12), 75.50% (SD=5.07) and 71.83% (SD=6.75), respectively. From the results, we found
that the layout with a single sensor led to lower accuracy. Among them, using the middle sensor
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Fig. 9. Confusion matrices when using data from different numbers and combinations of sensors: (a) All
3 sensors. (b) 2 sides sensors. (c) Left and middle sensors. (d) Right and middle sensors. (e) Single middle
sensor. (f) Single left sensor. (g) Single right Sensor. The middle-right corner of each confusion matrix is noted
with an overhead view of the device, where the green color represents the enabled sensor data from the
corresponding position(s).

resulted in the lowest accuracy. Using a single sensor on the left or right side, the recognition
accuracy of motions from different directions was not significantly affected by the position of the
single sensor.

We believe that one of the main characteristics of sensor data generated by mist is the presence of
significant noise. When using low-dimensional data as the training set, overfitting may occur. If the
model parameters are relatively excessive compared to the available data, it can lead to learning the
noise or outliers present in the training set. As the data dimension increases, particularly through
sensor configuration allowing for richer pattern generation, the increase in training data helps
balance the bias observed in low-dimensional settings and improves the accuracy. However, it is
important to consider the limitations imposed by the system design and sensor configuration, such
as the need for stable sensor coverage by mist in the proposed system. Based on the results, it
shows that employing a symmetric configuration with three sensors achieves an accuracy of over
90% represents one of the promising solutions.

5.3.2 Amount of Training Dataset. Since the system would be considered a daily interface, it
is necessary to understand the requirement of training data to initialize a robust classifier. We
conducted an experiment to examine the impact of training set size on accuracy. We divided all the
data into 10 groups, with each group containing 120 data samples. Then, using a random selection
approach, we sequentially selected one, two, three, and up to nine groups for training. During
each model training iteration, we randomly chose a group of data that was not included in the
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Fig. 10. (a) The impact of the number of training groups on the classifier’s performance. (b) Within-user and
cross-user accuracy of 3 sensors and 2 side sensors on 10 motions.

training set as the testing set. Given our findings from the within-user test, we observed comparable
accuracy using data from the two-side sensor configuration compared to using all 3 sensors. And
examined the influence of training data size on this two-side sensor configuration too.
The results are shown in Figure 10 (a). In general, it needs at least 7 groups of training data to

obtain accuracy around 90% for a 3-sensor configuration. As for the two-side sensor configuration,
it can only be close to 85% accuracy with around 8 groups of training data. It turns out that the
classifier still requires a considerable amount of training data to maintain and stabilize at high
accuracy, covering the randomness of airflow inputs with sample quantity and diversity.

5.3.3 Cross-user Test. To evaluate the system’s universality, a cross-user experiment was conducted.
The results will indicate whether the system can be smoothly used by users who have not been
recorded by the model. We employed data from 11 participants as the training set and used the
data from the twelfth participant as the testing set, iterating this process for all participants. Finally,
we recorded the average results and plotted them in Figure 10 (b). For the configuration with 3
sensors, the cross-user test achieved an accuracy of 79.30% (SD=10.48); for the configuration with 2
sensors, the accuracy was 72.08% (SD=8.52). This demonstrates the system’s degree of universality
given the current training data scale and motion set.

By observing the confusion matrix of each participant, we noticed that for 3 sensors configuration,
Flip Book, Jumping Jack and Squat can maintain a relatively high accuracy of around 84% during
the test. Furthermore, the middle sensor indeed enhanced the robustness of the model from the
results under the cross-user circumstance.

5.3.4 Recognizing the Motions Causing Similar Airflow. To further test the performance of our
system, we conducted an experiment on gesture recognition to push the limit of the mist-sensing
technique further. Most existing blowable interface designs that based on microphone input are
concentrate on detecting blowing [21, 31, 38]. We believe that mid-air gestures, such as waving and
clapping, can also generate airflow similar to the tested motions. Considering that the proposed
system essentially detects variations in mist formation, it is possible for users to generate airflow
with similar characteristics with different motions during the interaction. Therefore, in this section,
we incorporate gestures into the classifier. By doing so, we aim to test how the mist-sensing tech-
nique handles confusion when confronted with similar inputs and a higher number of classification
categories.
We tested 4 different motions, namely Wave and Clap, performed on both sides of the device

(Figure 11). Participants performed Wave on both sides using their respective Left and Right hands.
Other experiment settings were consistent with the previous study.
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Fig. 11. Gesture set tested in supplementary study: (a) Wave Left. (b) Wave Right. (c) Clap Left. (d) Clap
Right. The blue arrows in the figure represent the expected direction of airflow. The green arrows in (a) and
(b) represent the direction of the movement.

Fig. 12. (a) Confusion matrix between Blow, Wave and Clap. (b) Confusion matrix of 14 motions combining
10 motions set in the previous study and gestures.

As shown in Figure 12 (a), when testing between 6 motions of Blow,Wave and Clap from both
sides, the accuracy is 69.38% (SD=6.89). We observed a significant decrease in model accuracy and a
bias towards right-sided motions when these motions were combined together. Additionally, there
was noticeable confusion between the left-sided Wave and Clap. One possible reason could be that
the ROCKET classifier used in this study was selected to handle the complex noise and randomness
generated by mist with a larger set of motions. In the case of limited samples and similar airflow,
the three-dimensional data may be insufficient compared to the number of model parameters.
When bringing the gestures into the 10 motions tested in the previous study, the accuracy is

80.28% (SD=3.94). Compared to the 10 motions set in the previous study, an increase in the number
of categories can lead to a greater overlap of features among different classes. This feature conflict
can increase the model’s confusion, making it more challenging for the model to find effective
decision boundaries. In this case, the cross-user accuracy dropped to 70.25% (SD=8.05), which is
inadequate for an interactive interface. For this prototype based on a humidifier, which usually
serves as a stationary desktop device, using a few motions to control the humidifier’s functionality
or surrounding IoT devices is sufficient. If there is a need to recognize more complex airflow
patterns, richer data features and a larger number of samples would be needed.
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The selection of the number and types of motion categories would be a crucial factor affecting
the accuracy of the mist sensing-based detection task. When motions can generate similar airflow
while the number of categories is relatively small, the performance of the model is more likely
to decrease. In such cases, using lighter machine-learning methods might be more effective in
manually observing and designing features. On the other hand, when the number of categories is
large, it is advisable to increase the data dimension or sample size, providing the model with more
meaningful features. In real-world scenarios, for example, if the device is placed on the right side
of a table, removing the motions related to right-side directions or merging several directions of
the same motion can enhance the recognition performance of the model.

6 EXAMPLE APPLICATIONS

Fig. 13. The example applications of mist sensing: (a) Lights can be turned on by detecting the airflow
generated by the user when sitting down. (b) Users can use predefined mid-air gestures to replace hotkeys to
control the computer, like screenshots. (c) Lights can be turned off automatically when the user closes a book.
(d) Users can be greeted when entering a room. (e) The airflow generated by motion can be used to time or
count the exercise training. (f) Users can use real-world mist to control or shape virtual objects. The white
arrows in the figure represent airflow directions.

Mist sensing is based on the variations in airflow, which can be generated in both explicit and
implicit activities, regardless of whether the user interacts with the system with intention or not
[39]. Additionally, due to the composition of mist as tiny particles, it can capture finer and smaller
interference. This enables it to support various activities, including blowing, waving, jumping,
walking by, or sitting downwithin a certain spatial area. In this section, we provide 6 usage scenarios
of the prototype to demonstrate the concept of mist sensing with airflow.

Typically placed on a desk, the system can sense input through the mist to control computers or
other IoT devices. For example, users can switch desktops by waving their hands or quickly take
screenshots by clapping (Figure 13 (b)). The proposed system can enable intriguing interactions
by employing gestures that share common characteristics [16]. Furthermore, in the absence of
intentional input, the mist can also capture other activities of the user at the desk. For example,
when a user sits down and generates subtle disturbances in airflow that usually go unnoticed, the
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system can automatically turn on the lights (Figure 13 (a)). Similarly, the airflow produced when
the user stands up or closes a book after reading can be captured to turn the lights off once again
(Figure 13 (c)).

When the system is placed in the hallway or entrance area, it supports indoor traffic sensing. For
example, when placed on a cabinet or small table near the entrance, the mist can detect the airflow
generated when the door is opened or closed (Figure 13 (d)). Since the entrance is not a primary
area of indoor activity, it could exclusively capture the disturbances caused by people entering and
exiting. This makes the system support counting the number of people in an office or laboratory. It
could also be used to automate motions such as turning on the lights when the door is opened or
having a smart voice assistant greet the visitor.

When the system is located on the table in the living room or the floor in spacious areas, it can
monitor the user’s exercises. Fitness exercises like squats make it hard to generate airflow in a
clear and concentrated direction. Instead, they create ambiguous and complex airflow around the
body during exercise. These airflows are difficult to capture by microphones because they are too
subtle to create evident wind noise. However, they can be detected by mist due to the presence of
tiny particles susceptible to interference. For example, when the system is placed on a table, it can
measure the duration or quantity of squats or jumping Jacks performed by a person in front of the
table (Figure 13 (e)). Similarly, when placed on the floor, it can detect the duration and quantity of
push-ups or sit-ups performed by a person.
In addition, the system also has the potential to be used for various and unique purposes. Mist

sensing can create tangible interfaces where users can physically manipulate the shape of mist to
interact with digital content or virtual environments. This can include shaping or molding the mist
to control objects. For example, when a computer graphics designer is creating smoke for visual
effect, the designer can use a desktop humidifier as an input method to control the general shape
of the smoke in the virtual environment based on real-world mist and refine the details further
(Figure 13 (f)).

7 DESIGN LESSONS
From the design and evaluation of the proposed method of sensing the mist, the system is able to
recognize the mist variation caused by human motions (10 motions tested) and has the potential
capability to interact with daily objects, exercise, and hand gestures. Such an implicit mist-based
interface has great potential in daily life because human motion can change airflow and thus cause
a variation in mist. However, according to our exploration, designing a mist-based interface is not
easy. Since the core of sensing is the airflow change, the airflow normally follows a propagation
process from the motion to the mist and is affected by various factors, and as a freeform object, the
variation of the mist is also affected by various elements. Therefore, in this section, we summarize
the lessons that need to be considered in the development and design of using mist as an interface.

7.1 The Distance between the Mist Source and Motion
The core reason affecting the variation of mist is the intensity of airflow. As tested in Section 3.4,
when the airflow velocity is too low (e.g., less than 1 m/s), the airflow change does not cause the
variation of mist very well, and the ability to sense will decrease drastically. When the airflow
velocity is in a specific interval, the airflow will bring a more obvious variation to the mist, and the
detection capability of the system will be greatly improved at this time. Therefore, in the design, in
order to bring better performance to the system, we normally need to ensure that the intensity
of airflow affecting mist is in an acceptable range (for example, the wind speed of 1-2m/s given
in this paper). The airflow intensity will be affected by distance and velocity, so the design needs
to be balanced between the mist source and the motion source. For example, after determining
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the airflow velocity that the motion can generate, the mist source needs to be placed within a
reasonable distance so that the system has a good perception capability.

7.2 Design with Reasonable Variety of Motions
The motion leads to an instantaneous change in airflow, which then undergoes propagation and
decay. However, the change frommotionmapping to airflow to detectable mist is a high-dimensional
to low-dimensional process. The change of motion is various, while the variation of mist is limited.
Therefore, in this paper, we choose 10 motions to demonstrate the classification capability of the
system and test the performance using different numbers of sensors. As a result in Section 5.3.1,
the performance of the system improves as the number of sensors increases. This is due to the
increase in valid information as well as useful features due to the increase in data dimensionality,
but this rise is definitely limited. Therefore, in order to ensure the performance of the system, we
believe that the number of designed target recognition motions should not be too many, and about
5 is a suitable range from the result in Section 5.3.1. In this case, the designed interface system can
be a blowable interface, a desk-based object interaction detector, or a simple home fitness recorder.

7.3 Practical Dataset Collection
We rely mainly on the machine learning technique to design and develop a prototype for the
interface. However, the requirement for datasets has always been a concern for such systems. In
this paper, we tested the performance of training datasets with different amounts on the system.
During the data collection, each user performed each motion for about the 40s. With such data
length, the classifier can achieve a relatively good performance. And we also suggested before that
the recognition objects of such interfaces need not be too many. Considering the classifier design
of low-dimensional time series, compared with other types of recognition systems the dataset can
be kept at a modest size in the mist-interface design.

7.4 Avoid the False Positive by other Motions
As mentioned before, the core of mist change is the change of airflow. Section 5.4.3 tests the
recognition capability of the system with motions that generate similar airflow. The results show
that the performance of the system is challenged but still has some recognition capability. Therefore,
we believe there is still a need to consider a combination of factors in the design to minimize the
interference of other motions to the system, which can cause false positive problems. Such a
consideration can be reflected in the choice of the system location, which can be placed as far as
possible in places with less airflow interference, avoiding places like near air conditioners, next to
windows, corridors with high pedestrian traffic, and so on.

8 DISCUSSION
The underlying principle of the mist sensing proposed is based on the variation in ToF sensor
values caused by the airflow. It could seemingly perform a similar capability of motion recognition
with proximity sensors such as radar. Integrating mist with proximity sensors could redefine their
detection range and capabilities. At the same time, users benefit from natural visual feedback
due to the visibility of the mist. They can perceive the mist’s location and changes, aiding their
understanding of the interaction’s effects. As mentioned in Section 7.1, different motions can result
in similar airflow changes and result in false positives. However, this characteristic of mist sensing
allows for affording users greater flexibility and freedom to interact with the system in ways that
suit their preferences. In practical applications, instead of defining specific motions, users could
be prompted to make the mist drift to the left or disperse the mist for three seconds. Finally, this
technique opens up possibilities for new application scenarios, especially those involving mid-air

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ISS, Article 444. Publication date: December 2023.



444:18 Min et al.

interaction, such as olfactory interfaces [6, 40] or mist displays [29, 46]. These domains can leverage
mist sensing to introduce innovative input methods.

On the other hand, the proposed method has its limitations in terms of applicable scenarios. First
is precision and accuracy. Mist sensing may lack the precision of traditional proximity sensors.
Another concern would be the mist sensitivity. The sensitivity of mist sensing is a complicated
issue related to the speed of airflow, location of sensors, and type of mist/smoke as we discussed in
Section 3. Although it could also be directly adjusted by threshold or machine learning model, the
mist’s characteristic causes it to be highly sensitive to airflow variations, making it less suitable
for environments with strong wind or air turbulence. Implementation and maintenance of the
hardware, encompassing sensors and misting systems, can be more intricate compared to traditional
proximity sensors [12, 44]. Users may require some adaptation time to familiarize themselves with
this novel interaction method, as they need to comprehend how to interact effectively with mist.

In summary, mist sensing holds the potential to inspire innovative interaction designs in specific
contexts, such as the indoor installations demonstrated in our prototype. However, when considering
real-world applications, its complexity becomes apparent. Mist sensing is influenced by numerous
factors, including the type of mist or smoke, nozzle geometry, nozzle orientation, initial spray
velocity, the quantity and spatial distribution of sensors, and the maximum effective range of
interactions, among others. These challenges encompass the need for robust mist or smoke control,
optimal sensor placement and configuration, and versatile algorithms capable of interpreting noisy
and low-dimension sensor data effectively. Additionally, addressing issues related to scalability and
user acceptance will be important in practical applications.

9 LIMITATIONS AND FUTUREWORK
The paper presented a ToF sensor-based method detecting the mist variation caused by human
motions and thus could be employed as an interface to recognize human motions with different
application scenarios. The airflow acts as the medium, transmitting the movement from the human
to the variation of mist. However, we did not pay close attention to the airflow investigation in
this paper. As we tested in Sections 3 and 5, we only focused on the ultimate mist variations. In
fact, studying the airflow characteristics could be clearer to figure out the ability of mist sensing
and helpful for design. For example, it could be useful to understand how intensive the airflow is
normally generated when conducting the exercise. Such a quantitative description would be more
accurate in controlling the mist source’s placement.

When we designed the system, each sample length was selected as 4s. It is longer than a normal
human motion recognition system. This is because we have to consider the airflow propagation
and decay process, particularly for the motion of blowing. It is necessary to capture the useful
information as much as possible. We argued that it still fits naturally into the user’s habits. This
is because when doing this type of blowing motion, it usually lasts for a longer period of time.
Nevertheless, for other exercise motions, it is able to decrease the sample length to obtain a rapid
response of classification, as these motions would be quicker in general.
In addition, we only adopted the humidifier’s mist as the main source. It is still interesting to

test other types of common mist or smoke in daily life to be sensed by different types of motions.
Based on this, studying and designing an easily configurable interface system could be useful to be
adapted to many types of mist or smoke. However, the density of mist is still a significant factor
that needs to be considered. A low density of mist would be difficult to capture and prone to be
affected by airflow. A high density of mist tends to cause discomfort in an enclosed space. Thus,
creating a flexible system to fit more common mist could be the next step to making a more practical
interactive paradigm.
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In this paper, the performance of sensing and recognition capability was mainly studied. We did
not conduct a user study to collect the qualitative result from the user-end, for example, the like
level and agreement score. As a daily system, recruiting and conducting a detailed user study is
valuable to figure out any human factors-related findings. Since we employed a ubiquitous item
(humidifier) to create the system, it could be the next step to allow the users to use our system in
their home or office to interact with the humidifier as an exercise counter or electronics controller.

10 CONCLUSION
This paper demonstrates a technique for mist sensing, which is able to be employed to recognize
human motion input. The airflow caused by human motion could affect the patterns of mist. Since
the mist is able to reflect the emitted light, the variation of mist can be sensed by ToF sensors.
Therefore, we first examined the capability of a ToF sensor-based mist sensing system against the
different mist types and airflow characteristics. Based on this, we developed a prototype design
with a common humidifier to evaluate the performance of mist-based motion recognition. The
result showed that our system could achieve a 91.17% accuracy within-user, and 79.30% across users
in classifying 10 motions, including various types of blowing from different directions, interacting
with objects (flipping the book, waving the paper) and exercises (jumping-jacks and squats). We
also presented several application examples and design lessons to create and use such a mist-based
interface system. Using a very implicit and ubiquitous approach, we believe that the mist is able to
build a more natural and interesting interface in users’ daily lives.
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